FD.aicbic {FlexDir} | R Documentation |
Information Criterions of a Flexible Dirichlet Model
Description
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) of a fitted Flexible Dirichlet model.
An Information Criterion for one fitted model object for which a log-likelihood value can be obtained is defined as
-2*log-likelihood + k*npar
, where npar
represents the number of parameters in the fitted model, and k = 2
for AIC, or k = log(n)
for BIC ( n
being the number of observations).
Usage
FD.aicbic(x)
Arguments
x |
an object of class FDfitted, usually the result of |
See Also
FD.estimation
, FD.stddev
, FD.barycenters
Examples
data <- FD.generate(n=20,a=c(12,7,15),p=c(0.3,0.4,0.3),t=8)
data
results <- FD.estimation(data, normalize=TRUE,iter.initial.SEM = 5,iter.final.EM = 10)
results
FD.aicbic(results)
[Package FlexDir version 1.0 Index]