CENoisyFitBoot {FitDynMix} | R Documentation |
Cross-Entropy estimation and bootstrap standard errors
Description
This function estimates a dynamic mixture by means of the noisy Cross-Entropy method and computes bootstrap standard errors. Currently only implemented for the lognormal - generalized Pareto, with Cauchy or exponential weight. Bootstrap standard errors are computed in parallel.
Usage
CENoisyFitBoot(
yObs,
nboot,
rho,
maxiter,
alpha,
nsim,
nrepsInt,
xiInst,
betaInst,
eps,
r = 5,
weight
)
Arguments
yObs |
numerical vector: observed random sample from the mixture. |
nboot |
integer: number of bootstrap replications for computing the standard errors. If nboot = 0, no standard errors are computed. |
rho |
real in (0,1): parameter determining the quantile of the log-likelihood values to be used at each iteration. |
maxiter |
non-negative integer: maximum number of iterations. |
alpha |
real in (0,1): smoothing parameter. |
nsim |
non-negative integer: number of replications used in the normal and lognormal updating. |
nrepsInt |
non-negative integer: number of replications used in the Monte Carlo estimate of the normalizing constant. |
xiInst |
non-negative real: shape parameter of the instrumental GPD. |
betaInst |
non-negative real: scale parameter of the instrumental GPD. |
eps |
non-negative real: tolerance for the stopping criterion of the noisy Cross-Entropy method. |
r |
positive integer: length of window to be used in the stopping criterion. |
weight |
'cau' or 'exp': name of weight distribution. |
Value
If nboot > 0, a list with the following elements:
estPars: Cross-Entropy estimates.
nit: number of iterations needed for convergence.
loglik: maximized log-likelihood.
bootPars: parameter estimates obtained for each bootstrap sample.
stddev: bootstrap standard errors.
If nboot = 0, only estPars, nit and loglik are returned.
Examples
res = CENoisyFitBoot(Metro2019,0,.05,20,.5,500,500,3,3,.01,5,'exp')