ConditionalEffect {FindIt} | R Documentation |
Estimating the Conditional Effects with the CausalANOVA.
Description
ConditionalEffect
estimates a variety of conditional effects using
the ouput from CausalANOVA
.
Usage
ConditionalEffect(
object,
treat.fac = NULL,
cond.fac = NULL,
base.ind = 1,
round = 3,
inference = NULL,
verbose = TRUE
)
Arguments
object |
The output from |
treat.fac |
The name of factor acting as the main treatment variable. |
cond.fac |
The name of factor acting as the conditioning (moderating) variable. |
base.ind |
An indicator for the baseline of the treatment factor. Default is 1. |
round |
Digits to round estimates. Default is 3. |
inference |
(optional). This argument is mainly for internal use. It
indicates whether |
verbose |
Whether it prints the progress. |
Details
See Details in CausalANOVA
.
Value
CondtionalEffects |
The summary of estimated conditional effects. |
... |
Arguments for the internal use. |
Author(s)
Naoki Egami and Kosuke Imai.
References
Egami, Naoki and Kosuke Imai. 2019. Causal Interaction in Factorial Experiments: Application to Conjoint Analysis, Journal of the American Statistical Association. http://imai.fas.harvard.edu/research/files/int.pdf
Lim, M. and Hastie, T. 2015. Learning interactions via hierarchical group-lasso regularization. Journal of Computational and Graphical Statistics 24, 3, 627–654.
Post, J. B. and Bondell, H. D. 2013. “Factor selection and structural identification in the interaction anova model.” Biometrics 69, 1, 70–79.
See Also
Examples
data(Carlson)
## Specify the order of each factor
Carlson$newRecordF<- factor(Carlson$newRecordF,ordered=TRUE,
levels=c("YesLC", "YesDis","YesMP",
"noLC","noDis","noMP","noBusi"))
Carlson$promise <- factor(Carlson$promise,ordered=TRUE,levels=c("jobs","clinic","education"))
Carlson$coeth_voting <- factor(Carlson$coeth_voting,ordered=FALSE,levels=c("0","1"))
Carlson$relevantdegree <- factor(Carlson$relevantdegree,ordered=FALSE,levels=c("0","1"))
## #######################################
## Without Screening and Collapsing
## #######################################
#################### AMEs and two-way AMIEs ####################
fit2 <- CausalANOVA(formula=won ~ newRecordF + promise + coeth_voting + relevantdegree,
int2.formula = ~ newRecordF:coeth_voting,
data=Carlson, pair.id=Carlson$contestresp,diff=TRUE,
cluster=Carlson$respcodeS, nway=2)
summary(fit2)
plot(fit2, type="ConditionalEffect", fac.name=c("newRecordF","coeth_voting"))
ConditionalEffect(fit2, treat.fac="newRecordF", cond.fac="coeth_voting")