FundamentalFactor.Cov {FinCovRegularization} | R Documentation |
Covariance Matrix Estimation by Fundamental Factor Model
Description
Estimate covariance matrix by fitting a fundamental factor model using OLS or WLS regression
Usage
FundamentalFactor.Cov(assets, exposure, method = "WLS")
Arguments
assets |
a N*p matrix of asset returns, N indicates sample size and p indicates the dimension of asset returns |
exposure |
a p*q matrix of exposure indicator for the fundamental factor model, p corresponds to the dimension of asset returns, q indicates the number of fundamental industries |
method |
a character, indicating regression method: "OLS" or "WLS" |
Value
an estimated p*p covariance matrix
Examples
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
Indicator <- matrix(0,10,3)
dimnames(Indicator) <- list(colnames(assets),c("Drug","Auto","Oil"))
Indicator[c("ABT","LLY","MRK","PFE"),"Drug"] <- 1
Indicator[c("F","GM"),"Auto"] <- 1
Indicator[c("BP","CVX","RD","XOM"),"Oil"] <- 1
FundamentalFactor.Cov(assets,exposure=Indicator,method="WLS")
[Package FinCovRegularization version 1.1.0 Index]