compsym_asr_output {FieldSimR} | R Documentation |
Simulate genetic values based on a compound symmetry model for GxE interaction - Simulation with 'AlphaSimR'
Description
Creates a data frame of simulated genetic values in multiple environments for one or more traits
based on a compound symmetry model for genotype-by-environment (GxE) interaction. The wrapper function
compsym_asr_output()
requires an 'AlphaSimR'
population object generated with compsym_asr_input.
Usage
compsym_asr_output(pop, ntraits, nenvs, nreps, return.effects = FALSE)
Arguments
pop |
An 'AlphaSimR' population object (Pop-class or HybridPop-class) generated with compsym_asr_input. |
ntraits |
Number of traits specified in compsym_asr_input. |
nenvs |
Number of environments specified in compsym_asr_input. |
nreps |
A vector defining the number of replicates in each environment. If only one value is specified, all environments will be assigned the same number. |
return.effects |
When |
Value
A data frame with columns 'env', 'rep', and genotype 'id', followed by the
simulated genetic values for each trait. When return.effects = TRUE
, a list is returned with
additional entries containing the genotype main effects and GxE interaction effects for each trait.
Examples
# Simulate genetic values with 'AlphaSimR' for two additive + dominance traits
# in two environments based on a compound symmetry model.
# 1. Define the genetic architecture of the simulated traits.
# Mean genetic values and mean dominance degrees.
mean <- c(4.9, 5.4, 235.2, 228.5) # Trait 1 x 2 environments, Trait 2 x 2 environments
meanDD <- c(0.4, 0.4, 0.1, 0.1) # Trait 1 and 2, same value for both environments
# Additive genetic variances and dominance degree variances.
var <- c(0.08, 13) # Different values for Traits 1 and 2
varDD <- 0.2 # Same value for Traits 1 and 2
# Proportion of additive and dominance degree main effect variances.
prop.main <- c(0.4, 0.6) # Different values for Traits 1 and 2
prop.mainDD <- 0.4 # Same value for Traits 1 and 2
# Additive and dominance degree correlations between the two simulated traits.
corA <- matrix(c(
1.0, 0.5,
0.5, 1.0
), ncol = 2)
corDD <- diag(2) # Assuming independence
input_asr <- compsym_asr_input(
ntraits = 2,
nenvs = 2,
mean = mean,
var = var,
prop.main = prop.main,
corA = corA,
meanDD = meanDD,
varDD = varDD,
prop.mainDD = prop.mainDD,
corDD = corDD
)
# 2. Use input_asr to simulate genetic values with 'AlphaSimR' based on a
# compound symmetry model.
library("AlphaSimR")
FOUNDERPOP <- quickHaplo(
nInd = 10,
nChr = 1,
segSites = 20
)
SP <- SimParam$new(FOUNDERPOP)
SP$addTraitAD(
nQtlPerChr = 20,
mean = input_asr$mean,
var = input_asr$var,
corA = input_asr$corA,
meanDD = input_asr$meanDD,
varDD = input_asr$varDD,
corDD = input_asr$corDD,
useVarA = TRUE
)
# By default, the variances in 'var' represent additive genetic variances.
# When useVarA = FALSE, the values represent total genetic variances.
pop <- newPop(FOUNDERPOP)
# 3. Create a data frame with simulated genetic values for the two traits in
# the two environments, with two replicates of each genotype.
gv_ls <- compsym_asr_output(
pop = pop,
ntraits = 2,
nenvs = 2,
nreps = 2,
return.effects = TRUE
)