SEP_FIM {FiSh} | R Documentation |
Fisher-Shannon method
Description
Non-parametric estimates of the Shannon Entropy Power (SEP), the Fisher Information Measure (FIM) and the Fisher-Shannon Complexity (FSC), using kernel density estimators with Gaussian kernel.
Usage
SEP_FIM(x, h, log_trsf=FALSE, resol=1000, tol = .Machine$double.eps)
Arguments
x |
Univariate data. |
h |
Value of the bandwidth for the density estimate |
log_trsf |
Logical flag: if |
resol |
Number of equally-spaced points, over which function approximations are computed and integrated. |
tol |
A tolerance to avoid dividing by zero values. |
Value
A table with one row containing:
-
SEP
Shannon Entropy Power. -
FIM
Fisher Information Measure. -
FSC
Fisher-Shannon Complexity
References
F. Guignard, M. Laib, F. Amato, M. Kanevski, Advanced analysis of temporal data using Fisher-Shannon information: theoretical development and application in geosciences, 2020, doi: 10.3389/feart.2020.00255Frontiers in Earth Science, 8:255.
Examples
library(KernSmooth)
x <- rnorm(1000)
h <- dpik(x)
SEP_FIM(x, h)