FiSh-package {FiSh}R Documentation

FiSh: Fisher-Shannon Method

Description

Proposes non-parametric estimates of the Fisher information measure and the Shannon entropy power. More theoretical and implementation details can be found in Guignard et al. <doi:10.3389/feart.2020.00255>. A 'python' version of this work is available on 'github' and 'PyPi' ('FiShPy').

Details

If this R code is used for academic research, please cite the following paper where it was developed:

F. Guignard, M. Laib, F. Amato, M. Kanevski, Advanced analysis of temporal data using Fisher-Shannon information: theoretical development and application in geosciences, 2020, doi: 10.3389/feart.2020.00255Frontiers in Earth Science, 8:255.

Author(s)

Fabian Guignard fabian.guignard@protonmail.ch and

Mohamed Laib laib.med@gmail.com

Maintainer: Mohamed Laib laib.med@gmail.com

References

S. J. Sheather and M. C. Jones (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, Series B, 53, 683 - 690.

M. P. Wand and M. C. Jones (1995). Kernel Smoothing. Chapman and Hall, London.

C. Vignat, J.F Bercher (2003). Analysis of signals in the Fisher–Shannon information plane, Physics Letters A, 312, 190, 27 – 33.

F. Guignard, M. Laib, F. Amato, M. Kanevski, Advanced analysis of temporal data using Fisher-Shannon information: theoretical development and application in geosciences, 2020, doi: 10.3389/feart.2020.00255Frontiers in Earth Science, 8:255.


[Package FiSh version 1.1 Index]