aw2k {FatTailsR} | R Documentation |
Local Conversion Functions Between Kiener Distribution Parameters
Description
Conversion functions between parameters a
, k
, w
,
d
, e
used in Kiener distributions K2, K3 and K4.
Usage
aw2k(a, w)
aw2d(a, w)
aw2e(a, w)
ad2e(a, d)
ad2k(a, d)
ad2w(a, d)
ae2d(a, e)
ae2k(a, e)
ae2w(a, e)
ak2d(a, k)
ak2e(a, k)
ak2w(a, k)
de2a(d, e)
de2k(d, e)
de2w(d, e)
dk2a(d, k)
dk2e(d, k)
dk2w(d, k)
dw2a(d, w)
dw2e(d, w)
dw2k(d, w)
ek2a(e, k)
ek2d(e, k)
ek2w(e, k)
ew2a(e, w)
ew2d(e, w)
ew2k(e, w)
kd2a(k, d)
kd2e(k, d)
kd2w(k, d)
ke2a(k, e)
ke2d(k, e)
ke2w(k, e)
kw2a(k, w)
kw2d(k, w)
kw2e(k, w)
Arguments
a |
a numeric value. |
w |
a numeric value. |
d |
a numeric value. |
e |
a numeric value. |
k |
a numeric value. |
Details
a
(alpha) is the left tail parameter,
w
(omega) is the right tail parameter,
d
(delta) is the distortion parameter,
e
(epsilon) is the eccentricity parameter.
k
(kappa) is the harmonic mean of a
and w
and
describes a global tail parameter.
They are defined by:
aw2k(a, w) = k = 2 / (1/a + 1/w) = \frac{2}{\frac{1}{a} +\frac{1}{w}}
aw2d(a, w) = d = (-1/a + 1/w) / 2 = \frac{-\frac{1}{a} +\frac{1}{w}}{2}
aw2e(a, w) = e = (a - w) / (a + w) = \frac{a-w}{a+w}
kd2a(k, d) = a = 1 / ( 1/k - d) = \frac{1}{\frac{1}{k} - d}
kd2w(k, d) = w = 1 / ( 1/k + d) = \frac{1}{\frac{1}{k} + d}
ke2a(k, e) = a = k / (1 - e) = \frac{k}{1-e}
ke2w(k, e) = w = k / (1 + e) = \frac{k}{1+e}
ke2d(k, e) = d = e / k = \frac{e}{k}
kd2e(k, d) = e = k * d
de2k(k, e) = k = e / d = \frac{e}{d}
See Also
The asymmetric Kiener distributions K2, K3, K4:
kiener2
, kiener3
, kiener4
Examples
aw2k(4, 6); aw2d(4, 6); aw2e(4, 6)
outer(1:6, 1:6, aw2k)