cv.FastStepGraph {FastStepGraph} | R Documentation |
Searches for the optimal combination of alpha_f and alpha_b parameters using Cross-Validation
Description
cv.FastStepGraph
implements the cross-validation for the Fast Step Graph algorithm.
Usage
cv.FastStepGraph(
x,
n_folds = 5,
alpha_f_min = 0.2,
alpha_f_max = 0.8,
b_coef = 0.5,
n_alpha = 32,
nei.max = 5,
data_scale = FALSE,
data_shuffle = TRUE,
max.iterations = NULL,
return_model = FALSE,
parallel = FALSE,
n_cores = NULL
)
Arguments
x |
Data matrix (of size n x p). |
n_folds |
Number of folds for the cross-validation procedure (default value 5). |
alpha_f_min |
Minimum threshold value for the cross-validation procedure (default value 0.2). |
alpha_f_max |
Minimum threshold value for the cross-validation procedure (default value 0.8). |
b_coef |
This parameter applies the empirical rule alpha_b=b_coef*alpha_f during the initial search for the optimal alpha_f parameter while alpha_b remains fixed, after finding optimal alpha_f, alpha_b is varied to find its optimal value. The default value of b_coef is 0.5. |
n_alpha |
Number of elements in the grid for the cross-validation (default value 32). |
nei.max |
Maximum number of variables in every neighborhood (default value 5). |
data_scale |
Boolean parameter (TRUE or FALSE), when to scale data to zero mean and unit variance (default FALSE). |
data_shuffle |
Boolean parameter (default TRUE), when samples (rows of X) must be randomly shuffled. |
max.iterations |
Maximum number of iterations (integer), the defaults values is set to p*(p-1). |
return_model |
Default FALSE. If set to TRUE, at the end of cross-validation, FastStepGraph is called with the optimal parameters alpha_f and alpha_b, returning |
parallel |
Boolean parameter (TRUE or FALSE), when to run Cross-Validation in parallel using a multicore architecture (default FALSE). |
n_cores |
An 'int' value specifying the number of cores do you want to use if 'parallel=TRUE'. If n_cores is not specified, the maximum number of cores on your machine minus one will be set automatically. |
Value
A list with the values:
alpha_f_opt |
the optimal alpha_f value. |
alpha_f_opt |
the optimal alpha_f value. |
CV.loss |
minimum loss. |
If return_model=TRUE, then also returns:
vareps |
Response variables. |
beta |
Regression coefficients. |
Edges |
Estimated set of edges. |
Omega |
Estimated precision matrix. |
Author(s)
Prof. Juan G. Colonna, PhD. juancolonna@icomp.ufam.edu.br
Prof. Marcelo Ruiz, PhD. mruiz@exa.unrc.edu.ar
Examples
data <- FastStepGraph::SigmaAR(30, 50, 0.4) # Simulate Gaussian Data
res <- FastStepGraph::cv.FastStepGraph(data$X, data_scale=TRUE)