FastStepGraph {FastStepGraph} | R Documentation |
Fast Stepwise Gaussian Graphical Model
Description
Improved and faster implementation of the Stepwise Gaussian Graphical Algorithm.
Usage
FastStepGraph(
x,
alpha_f,
alpha_b = NULL,
nei.max = 5,
data_scale = FALSE,
max.iterations = NULL
)
Arguments
x |
Data matrix (of size n_samples x p_variables). |
alpha_f |
Forward threshold (no default value). |
alpha_b |
Backward threshold. If alpha_b=NULL, then the rule alpha_b <- 0.5*alpha_f is applied. |
nei.max |
Maximum number of variables in every neighborhood (default value 5). |
data_scale |
Boolean parameter (TRUE or FALSE), when to scale data to zero mean and unit variance (default FALSE). |
max.iterations |
Maximum number of iterations (integer), the defaults values is set to p*(p-1). |
Value
A list with the values:
vareps |
Response variables. |
beta |
Regression coefficients. |
Edges |
Estimated set of edges. |
Omega |
Estimated precision matrix. |
Author(s)
Prof. Juan G. Colonna, PhD. juancolonna@icomp.ufam.edu.br
Prof. Marcelo Ruiz, PhD. mruiz@exa.unrc.edu.ar
Examples
data <- FastStepGraph::SigmaAR(30, 50, 0.4) # Simulate Gaussian Data
G <- FastStepGraph::FastStepGraph(data$X, alpha_f = 0.22, alpha_b = 0.14, data_scale=TRUE)
[Package FastStepGraph version 0.1.1 Index]