fgasp {FastGaSP} | R Documentation |
Setting up the Fast GaSP model
Description
Creating an fgasp
class for a GaSP model with matern covariance.
Usage
fgasp(input, output, have_noise=TRUE, kernel_type='matern_5_2')
Arguments
input |
a vector with dimension num_obs x 1 for the sorted input locations. |
output |
a vector with dimension n x 1 for the observations at the sorted input locations. |
have_noise |
a bool value. If it is true, it means the model contains a noise. |
kernel_type |
a |
Value
fgasp
returns an S4 object of class fgasp
(see fgasp
).
Author(s)
Mengyang Gu [aut, cre]
Maintainer: Mengyang Gu <mengyang@pstat.ucsb.edu>
References
Hartikainen, J. and Sarkka, S. (2010). Kalman filtering and smoothing solutions to temporal gaussian process regression models, Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop, 379-384.
M. Gu, Y. Xu (2017), Nonseparable Gaussian stochastic process: a unified view and computational strategy, arXiv:1711.11501.
M. Gu, X. Wang and J.O. Berger (2018), Robust Gaussian Stochastic Process Emulation, Annals of Statistics, 46, 3038-3066.
Examples
library(FastGaSP)
#-------------------------------------
# Example 1: a simple example with noise
#-------------------------------------
y_R<-function(x){
cos(2*pi*x)
}
###let's test for 2000 observations
set.seed(1)
num_obs=2000
input=runif(num_obs)
output=y_R(input)+rnorm(num_obs,mean=0,sd=0.1)
##constucting the fgasp.model
fgasp.model=fgasp(input, output)
show(fgasp.model)
#------------------------------------------
# Example 2: a simple example with no noise
#------------------------------------------
y_R<-function(x){
sin(2*pi*x)
}
##generate some data without noise
num_obs=50
input=seq(0,1,1/(num_obs-1))
output=y_R(input)
##constucting the fgasp.model
fgasp.model=fgasp(input, output,have_noise=FALSE)
show(fgasp.model)