Vuong.Factor {FactorCopula} | R Documentation |
Vuong's test for the comparison of factor copula models
Description
Vuong (1989)'s test for the comparison of non-nested factor copula models for mixed data. We compute the Vuong's test between the factor copula model with BVN copulas (that is the standard factor model) and a competing factor copula model to reveal if the latter provides better fit than the standard factor model.
Usage
vuong.1f(cpar.bvn, cpar, copF1, continuous, ordinal, count, gl, param)
vuong.2f(cpar.bvn, cpar, copF1, copF2, continuous, ordinal, count, gl, param)
Arguments
cpar.bvn |
copula parameters of the factor copula model with BVN copulas. |
cpar |
copula parameters of the competing factor copula model. |
copF1 |
copula names for the first factor of the competing factor copula model. |
copF2 |
copula names for the second factor of the competing factor copula model. |
continuous |
matrix of continuous data. |
ordinal |
matrix of ordinal data. |
count |
matrix of count data. |
gl |
gauss-legendre quardature points. |
param |
parameterization of estimated copula parameters. If FALSE, then cpar are the actual copula parameters without any transformation/reparamterization. |
Value
A vector containing the following components:
z |
the test statistic. |
p.value |
the |
CI.left |
lower/left endpoint of 95% confidence interval. |
CI.right |
upper/right endpoint of 95% confidence interval. |
Author(s)
Sayed H. Kadhem s.kadhem@uea.ac.uk
Aristidis K. Nikoloulopoulos a.nikoloulopoulos@uea.ac.uk
References
Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Factor copula models for mixed data. British Journal of Mathematical and Statistical Psychology, 74, 365–403. doi:10.1111/bmsp.12231.
Vuong, Q.H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57, 307–333.
Examples
#------------------------------------------------
# Setting quadreture points
nq <- 25
gl <- gauss.quad.prob(nq)
#------------------------------------------------
# PE Data
#------------------ -----------------
data(PE)
continuous.PE1 = -PE[,1]
continuous.PE2 = PE[,2]
continuous.PE <- cbind(continuous.PE1, continuous.PE2)
categorical.PE <- PE[, 3:5]
d <- ncol(PE)
#------------------------------------------------
# Estimation
#------------------ -----------------
# factor copula model with BVN copulas
cop1f.PE.bvn <- rep("bvn", d)
PE.bvn1f <- mle1factor(continuous.PE, categorical.PE,
count=NULL, copF1=cop1f.PE.bvn, gl, hessian = TRUE)
# Selected factor copula model
cop1f.PE <- c("joe", "joe", "rjoe", "joe", "gum")
PE.selected1f <- mle1factor(continuous.PE, categorical.PE,
count=NULL, copF1=cop1f.PE, gl, hessian = TRUE)
#------------------------------------------------
# Vuong's test
#------------------ -----------------
v1f.PE.selected <- vuong.1f(PE.bvn1f$cpar$f1,
PE.selected1f$cpar$f1,cop1f.PE, continuous.PE,
categorical.PE, count=NULL, gl, param=FALSE)