Select.Factor {FactorCopula} | R Documentation |
Model selection of the factor copula models for mixed data
Description
A heuristic algorithm that automatically selects the bivariate parametric copula families that link the observed to the latent variables.
Usage
select1F(continuous, ordinal, count, copnamesF1, gl)
select2F(continuous, ordinal, count, copnamesF1, copnamesF2, gl)
Arguments
continuous |
|
ordinal |
|
count |
|
copnamesF1 |
A vector with the names of possible candidates of bivariate copulas that link the each of the oberved variabels with the 1st factor. Choices are “bvn” for BVN, “bvt |
copnamesF2 |
A list with the names of possible candidates of bivariate copulas that link the each of the oberved variabels with the 1st and 2nd factors. Choices are “bvn” for BVN, “bvt |
gl |
Gauss legendre quardrature nodes and weights. |
Details
The linking copulas at each factor are selected with a sequential algorithm under the initial assumption that linking copulas are Frank, and then sequentially copulas with non-tail quadrant independence are assigned to any of pairs where necessary to account for tail asymmetry (discrete data) or tail dependence (continuous data).
Value
A list containing the following components:
``1st factor'' |
The selected bivariate linking copulas for the 1st factor. |
``2nd factor'' |
The selected bivariate linking copulas for the 2nd factor. |
AIC |
Akaike information criterion. |
taus |
The estimated copula parameters in Kendall's tau scale. |
Author(s)
Sayed H. Kadhem s.kadhem@uea.ac.uk
Aristidis K. Nikoloulopoulos a.nikoloulopoulos@uea.ac.uk
References
Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Factor copula models for mixed data. British Journal of Mathematical and Statistical Psychology, 74, 365–403. doi:10.1111/bmsp.12231.
Examples
#------------------------------------------------
# Estimation
#------------------ -----------------
# Setting quadreture points
nq<-25
gl<-gauss.quad.prob(nq)
#------------------------------------------------
# PE Data
#------------------ -----------------
data(PE)
continuous.PE1 = -PE[,1]
continuous.PE <- cbind(continuous.PE1, PE[,2])
categorical.PE <- PE[, 3:5]
#------------------ One-factor -----------------
# listing the possible copula candidates:
d <- ncol(PE)
copulasF1 <- rep(list(c("bvn", "bvt3", "bvt5", "frk", "gum",
"rgum", "rjoe","joe", "1rjoe","2rjoe", "1rgum","2rgum")), d)
out1F.PE <- select1F(continuous.PE, categorical.PE,
count=NULL, copulasF1, gl)