mle.StructuredFactor {FactorCopula} | R Documentation |
Maximum likelihood estimation of the bi-factor and second-order copula models for item response data
Description
We approach the estimation of the bi-factor and second-order copula models for item response data with the IFM method of Joe (2005).
Usage
mleBifactor(y, copnames1, copnames2, gl, ngrp, grpsize,
hessian, print.level)
mleSecond_order(y, copnames1, copnames2, gl, ngrp, grpsize,
hessian, print.level)
Arguments
y |
|
copnames1 |
For the bi-factor copula: |
copnames2 |
For the bi-factor copula: |
gl |
Gauss legendre quardrature nodes and weights. |
ngrp |
number of non-overlapping groups. |
grpsize |
vector indicating the size for each group, e.g., c(4,4,4) indicating four items in all three groups. |
hessian |
If TRUE, the hessian of the negative log-likelihood is calculated during the minimization process. |
print.level |
Determines the level of printing which is done during the minimization process; same as in |
Details
Estimation is achieved by maximizing the joint log-likelihood over the copula parameters with the univariate cutpoints fixed as estimated at the first step of the proposed two-step estimation approach.
Value
A list containing the following components:
cutpoints |
The estimated univariate cutpoints. |
taus |
The estimated copula parameters in Kendall's tau scale. |
SEs |
The SEs of the Kendall's tau estimates. |
loglik |
The maximized joint log-likelihood. |
Author(s)
Sayed H. Kadhem s.kadhem@uea.ac.uk
Aristidis K. Nikoloulopoulos a.nikoloulopoulos@uea.ac.uk
References
Joe, H. (2005) Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analysis, 94, 401–419. doi:10.1016/j.jmva.2004.06.003.
Kadhem, S.H. and Nikoloulopoulos, A.K. (2023) Bi-factor and second-order copula models for item response data. Psychometrika, 88, 132–157. doi:10.1007/s11336-022-09894-2.
Examples
#------------------------------------------------
# Setting quadreture points
nq <- 25
gl <- gauss.quad.prob(nq)
#------------------------------------------------
# TAS Data
#------------------ -----------------
data(TAS)
#using a subset of the data
#group1: 1,3,6,7,9,13,14
grp1=c(1,3,6)
#group2: 2,4,11,12,17
grp2=c(2,4,11)
#group3: 5,8,10,15,16,18,19,20
grp3=c(5,8,10)
#Rearrange items within testlets
set.seed(123)
i=sample(1:nrow(TAS),500)
ydat=TAS[i,c(grp1,grp2,grp3)]
d=ncol(ydat);d
n=nrow(ydat);n
#size of each group
g1=length(grp1)
g2=length(grp2)
g3=length(grp3)
grpsize=c(g1,g2,g3)#group size
#number of groups
ngrp=length(grpsize)
#BI-FACTOR
copX0 = rep("bvt2", d)
copXg = c(rep("rgum", g1), rep("bvt3", g2+g3))
mle_Bifactor = mleBifactor(y = ydat, copX0, copXg, gl, ngrp, grpsize, hessian=FALSE, print.level=2)