mle.Factor {FactorCopula} | R Documentation |
Maximum likelhood estimation of factor copula models for mixed data
Description
We use a two-stage etimation approach toward the estimation of factor copula models for mixed continuous and discrete data.
Usage
mle1factor(continuous, ordinal, count, copF1, gl, hessian, print.level)
mle2factor(continuous, ordinal, count, copF1, copF2, gl, hessian, print.level)
mle2factor.bvn(continuous, ordinal, count, copF1, copF2, gl, SpC, print.level)
Arguments
continuous |
|
ordinal |
|
count |
|
copF1 |
|
copF2 |
|
gl |
Gauss legendre quardrature nodes and weights. |
SpC |
Special case for the 2-factor copula model with BVN copulas. Select a bivariate copula at the 2nd factor to be fixed to independence. e.g. "SpC = 1" to set the first copula at the 2nd factor to independence. |
hessian |
If TRUE, the hessian of the negative log-likelihood is calculated during the minimization process. |
print.level |
Determines the level of printing which is done during the minimization process; same as in |
Details
Estimation is achieved by maximizing the joint log-likelihood over the copula parameters with the univariate parameters/distributions fixed as estimated at the first step of the proposed two-step estimation approach.
Value
A list containing the following components:
cutpoints |
The estimated univariate cutpoints. |
negbinest |
The estimated univariate parametes for the count responses (fitting the negative binomial distribution). |
loglik |
The maximized joint log-likelihood. |
cpar |
Estimated copula parameters in a list form. |
taus |
The estimated copula parameters in Kendall's tau scale. |
SEs |
The SEs of the Kendall's tau estimates. |
Author(s)
Sayed H. Kadhem s.kadhem@uea.ac.uk
Aristidis K. Nikoloulopoulos a.nikoloulopoulos@uea.ac.uk
References
Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Factor copula models for mixed data. British Journal of Mathematical and Statistical Psychology, 74, 365–403. doi:10.1111/bmsp.12231.
Krupskii, P. and Joe, H. (2013) Factor copula models for multivariate data. Journal of Multivariate Analysis, 120, 85–101. doi:10.1016/j.jmva.2013.05.001.
Nikoloulopoulos, A.K. and Joe, H. (2015) Factor copula models with item response data. Psychometrika, 80, 126–150. doi:10.1007/s11336-013-9387-4.
Examples
#------------------------------------------------
# Setting quadreture points
nq <- 25
gl <- gauss.quad.prob(nq)
#------------------------------------------------
# PE Data
#------------------ -----------------
data(PE)
continuous.PE1 = -PE[,1]
continuous.PE2 = PE[,2]
continuous.PE <- cbind(continuous.PE1, continuous.PE2)
categorical.PE <- PE[, 3:5]
#------------------------------------------------
# Estimation
#------------------ -----------------
#------------------ One-factor -----------------
# one-factor copula model
cop1f.PE <- c("joe", "joe", "rjoe", "joe", "gum")
est1factor.PE <- mle1factor(continuous.PE, categorical.PE,
count=NULL, copF1=cop1f.PE, gl, hessian = TRUE)
est1factor.PE
#------------------------------------------------
#------------------------------------------------
# GSS Data
#------------------ -----------------
data(GSS)
attach(GSS)
continuous.GSS <- cbind(INCOME, AGE)
ordinal.GSS <- cbind(DEGREE, PINCOME, PDEGREE)
count.GSS <- cbind(CHILDREN, PCHILDREN)
#------------------------------------------------
# Estimation
#------------------ -----------------
#------------------ One-factor -----------------
# one-factor copula model
cop1f.GSS <- c("joe","2rjoe","bvt3","bvt3",
"rgum","2rjoe","2rgum")
est1factor.GSS <- mle1factor(continuous.GSS, ordinal.GSS,
count.GSS, copF1 = cop1f.GSS, gl, hessian = TRUE)