M2.StructuredFactor {FactorCopula} | R Documentation |
Goodness-of-fit of bi-factor and second-order copula models for item response data
Description
The limited information M_2
statistic (Maydeu-Olivares and Joe, 2006) of bi-factor and second-order copula models for item response data.
Usage
M2Bifactor(y,cpar, copnames1, copnames2, gl, ngrp, grpsize)
M2Second_order(y,cpar, copnames1, copnames2, gl, ngrp, grpsize)
Arguments
y |
|
cpar |
A list of estimated copula parameters. |
copnames1 |
For the bi-factor copula: |
copnames2 |
For the bi-factor copula: |
gl |
Gauss legendre quardrature nodes and weights. |
ngrp |
number of non-overlapping groups. |
grpsize |
vector indicating the size for each group, e.g., c(4,4,4) indicating four items in all three groups. |
Details
The M_2
statistic has been developed for goodness-of-fit testing in multidimensional contingency tables by Maydeu-Olivares and Joe (2006). We use the M_2
to assess the overall fit for the bi-factor and second-order copula models for item resposne data (Kadhem & Nikoloulopoulos, 2021).
Value
A list containing the following components:
M2 |
The |
df |
|
p-value |
The resultant |
Author(s)
Sayed H. Kadhem s.kadhem@uea.ac.uk
Aristidis K. Nikoloulopoulos a.nikoloulopoulos@uea.ac.uk
References
Kadhem, S.H. and Nikoloulopoulos, A.K. (2023) Bi-factor and second-order copula models for item response data. Psychometrika, 88, 132–157. doi:10.1007/s11336-022-09894-2.
Maydeu-Olivares, A. and Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables. Psychometrika, 71, 713–732. doi:10.1007/s11336-005-1295-9.
Examples
#------------------------------------------------
# Setting quadreture points
nq <- 15
gl <- gauss.quad.prob(nq)
#------------------------------------------------
# TAS Data
#------------------ -----------------
data(TAS)
#using a subset of the data
#group1: 1,3,6,7,9,13,14
grp1=c(1,3,6)
#group2: 2,4,11,12,17
grp2=c(2,4,11)
#group3: 5,8,10,15,16,18,19,20
grp3=c(5,8,10)
#Rearrange items within testlets
set.seed(123)
i=sample(1:nrow(TAS),500)
ydat=TAS[i,c(grp1,grp2,grp3)]
d=ncol(ydat);d
n=nrow(ydat);n
#size of each group
g1=length(grp1)
g2=length(grp2)
g3=length(grp3)
grpsize=c(g1,g2,g3)#group size
#number of groups
ngrp=length(grpsize)
#------------------------------------------------
# M2
#------------------------------------------------
#BI-FACTOR
tauX0 = c(0.49,0.16,0.29,#0.09,0.47,0.49,0.30,
0.46,0.41,0.33,#0.29,0.24,
0.10,0.16,0.14)#,0.12,0.03,0.03,0.10,0.10)
tauXg = c(0.09,0.37,0.23,#0.53,0.24,0.32,0.27,
0.53,0.58,0.20,#0.23,0.25,0.34,0.33,
0.30,0.19,0.24)#,0.29,0.43,0.26)
copX0 = rep("bvt2", d)
copXg = c(rep("rgum", g1), rep("bvt3", g2+g3))
#converting taus to cpars
cparX0=mapply(function(x,y) tau2par(x,y),x=copX0,y=tauX0)
cparXg=mapply(function(x,y) tau2par(x,y),x=copXg,y=tauXg)
cpar=c(cparX0,cparXg)
m2_Bifactor = M2Bifactor(y=ydat, cpar, copX0, copXg, gl, ngrp, grpsize)