kmo {FactorAssumptions} | R Documentation |
Calculates the Kayser-Meyer-Olkin (KMO)
Description
kmo()
handles both positive definite and not-positive definite matrix by employing the Moore-Penrose inverse (pseudoinverse)
Usage
kmo(x, squared = TRUE)
Arguments
x |
a matrix or dataframe |
squared |
TRUE if matrix is squared (such as adjacency matrices), FALSE otherwise |
Value
A list with
-
overall
- Overall KMO value -
individual
- Individual KMO's dataframe -
AIS
- Anti-image Covariance Matrix -
AIR
- Anti-image Correlation Matrix
Examples
set.seed(123)
df <- as.data.frame(matrix(rnorm(100*10, 1, .5), ncol=10))
kmo(df, squared = FALSE)
[Package FactorAssumptions version 2.0.1 Index]