| dimRestrict {FactoInvestigate} | R Documentation | 
Significant dimensions identification
Description
Evaluate the number of significant dimensions in the data.
Usage
dimRestrict(res, file = "", rand = NULL)
Arguments
res | 
 an object of class PCA, CA or MCA.  | 
file | 
 the file path where to write the function execution in Rmarkdown language. If not specified, the description is written in the console.  | 
rand | 
 an optional vector of eigenvalues to compare the observation with. If NULL, use the result of the   | 
Value
ncp | 
 the number of significant dimensions.  | 
Author(s)
Simon Thuleau and Francois Husson
See Also
Examples
## Not run: 
require(FactoMineR)
data(decathlon)
res.pca = PCA(decathlon, quanti.sup = c(11:12), quali.sup = c(13), graph = FALSE)
dimRestrict(res.pca, file = "PCA.Rmd")
## End(Not run)
[Package FactoInvestigate version 1.9 Index]