error.estimate {FVDDPpkg} | R Documentation |
Compare the performance of a Monte-Carlo estimate with respect to the exact result.
Description
Compare the performance of a Monte-Carlo estimate with respect to the exact result.
Usage
error.estimate(fvddp.exact, fvddp.approx, remove.unmatched = FALSE)
Arguments
fvddp.exact |
An instance of class |
fvddp.approx |
An instance of class |
remove.unmatched |
Choose whether the weights associated to multiplicities
that are in |
Value
A vector whose j-th element is the difference (in absolute value) between
the weight of the j-th row of the matrix M
of fvddp.exact
and the weight
of the row of the matrix M
of fvddp.approx
equal to it. The length depends
on the value of remove.unmathced
.
Examples
#iniialize the process
FVDDP = initialize(3, function(x) rgamma(x, 2,2),
function(x) dgamma(x, 2,2), FALSE)
FVDDP = update(FVDDP, c(rep(abs(rnorm(2,1, 4)), 2), rexp(2, 0.5)))
#perform n exact propagation and an approximate one
EXACT = propagate(FVDDP, 0.7)
APPROX = approx.propagate(FVDDP, 0.7, 10000)
#measure the error with this function
error.estimate(fvddp.exact = EXACT, fvddp.approx = APPROX, TRUE)
#in order to smoot, create and propagate the signal from the past and from the future
FVDDP=initialize(3, function(x) rbinom(x, 10, 0.2),
function(x) dbinom(x, 10, 0.2), TRUE)
FVDDP.PAST = update(FVDDP, c(2,3))
FVDDP.FUTURE = update(FVDDP, c(4))
FVDDP.FUTURE = propagate(FVDDP.FUTURE, 0.5)
FVDDP.FUTURE = update(FVDDP.FUTURE, c(1))
#compute an exact and an approximate smoothing
EXACT = smooth(FVDDP.PAST, FVDDP.FUTURE, 0.4, 0.3, c(1,3))
APPROX = approx.smooth(FVDDP.PAST, FVDDP.FUTURE, 0.4, 0.3, c(1,3), 20000)
#compute the error again
error.estimate(fvddp.exact = EXACT, fvddp.approx = APPROX)
[Package FVDDPpkg version 0.1.2 Index]