discretize {FSelectorRcpp} | R Documentation |
Discretization
Description
Discretize a range of numeric attributes in the dataset into nominal
attributes. Minimum Description Length
(MDL) method is set as the default
control. There is also available equalsizeControl
method.
Usage
discretize(
x,
y,
control = list(mdlControl(), equalsizeControl()),
all = TRUE,
discIntegers = TRUE,
call = NULL
)
mdlControl()
equalsizeControl(k = 10)
customBreaksControl(breaks)
Arguments
x |
Explanatory continuous variables to be discretized or a formula. |
y |
Dependent variable for supervised discretization or a data.frame when |
control |
|
all |
Logical indicating if a returned data.frame should contain other features that were not discretized.
(Example: should |
discIntegers |
logical value. If true (default), then integers are treated as numeric vectors and they are discretized. If false integers are treated as factors and they are left as is. |
call |
Keep as |
k |
Number of partitions. |
breaks |
custom breaks used for partitioning. |
Author(s)
Zygmunt Zawadzki zygmunt@zstat.pl
References
U. M. Fayyad and K. B. Irani. Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In 13th International Joint Conference on Uncertainly in Artificial Intelligence(IJCAI93), pages 1022-1029, 1993.
Examples
# vectors
discretize(x = iris[[1]], y = iris[[5]])
# list and vector
head(discretize(x = list(iris[[1]], iris$Sepal.Width), y = iris$Species))
# formula input
head(discretize(x = Species ~ ., y = iris))
head(discretize(Species ~ ., iris))
# use different methods for specific columns
ir1 <- discretize(Species ~ Sepal.Length, iris)
ir2 <- discretize(Species ~ Sepal.Width, ir1, control = equalsizeControl(3))
ir3 <- discretize(Species ~ Petal.Length, ir2, control = equalsizeControl(5))
head(ir3)
# custom breaks
ir <- discretize(Species ~ Sepal.Length, iris,
control = customBreaksControl(breaks = c(0, 2, 5, 7.5, 10)))
head(ir)
## Not run:
# Same results
library(RWeka)
Rweka_disc_out <- RWeka::Discretize(Species ~ Sepal.Length, iris)[, 1]
FSelectorRcpp_disc_out <- FSelectorRcpp::discretize(Species ~ Sepal.Length,
iris)[, 1]
table(Rweka_disc_out, FSelectorRcpp_disc_out)
# But faster method
library(microbenchmark)
microbenchmark(FSelectorRcpp::discretize(Species ~ Sepal.Length, iris),
RWeka::Discretize(Species ~ Sepal.Length, iris))
## End(Not run)