entropy.based {FSelector} | R Documentation |
Entropy-based filters
Description
The algorithms find weights of discrete attributes basing on their correlation with continous class attribute.
Usage
information.gain(formula, data, unit)
gain.ratio(formula, data, unit)
symmetrical.uncertainty(formula, data, unit)
Arguments
formula |
A symbolic description of a model. |
data |
Data to process. |
unit |
Unit for computing entropy (passed to |
Details
information.gain
is
H(Class) + H(Attribute) - H(Class, Attribute)
.
gain.ratio
is
\frac{H(Class) + H(Attribute) - H(Class, Attribute)}{H(Attribute)}
symmetrical.uncertainty
is
2\frac{H(Class) + H(Attribute) - H(Class, Attribute)}{H(Attribute) + H(Class)}
Value
a data.frame containing the worth of attributes in the first column and their names as row names
Author(s)
Piotr Romanski, Lars Kotthoff
Examples
data(iris)
weights <- information.gain(Species~., iris)
print(weights)
subset <- cutoff.k(weights, 2)
f <- as.simple.formula(subset, "Species")
print(f)
weights <- information.gain(Species~., iris, unit = "log2")
print(weights)
weights <- gain.ratio(Species~., iris)
print(weights)
subset <- cutoff.k(weights, 2)
f <- as.simple.formula(subset, "Species")
print(f)
weights <- symmetrical.uncertainty(Species~., iris)
print(weights)
subset <- cutoff.biggest.diff(weights)
f <- as.simple.formula(subset, "Species")
print(f)
[Package FSelector version 0.34 Index]