best.first.search {FSelector} | R Documentation |
Best-first search
Description
The algorithm for searching atrribute subset space.
Usage
best.first.search(attributes, eval.fun, max.backtracks = 5)
Arguments
attributes |
a character vector of all attributes to search in |
eval.fun |
a function taking as first parameter a character vector of all attributes and returning a numeric indicating how important a given subset is |
max.backtracks |
an integer indicating a maximum allowed number of backtracks, default is 5 |
Details
The algorithm is similar to forward.search
besides the fact that is chooses the best node from all already evaluated ones and evaluates it. The selection of the best node is repeated approximately max.backtracks
times in case no better node found.
Value
A character vector of selected attributes.
Author(s)
Piotr Romanski
See Also
forward.search
, backward.search
, hill.climbing.search
, exhaustive.search
Examples
library(rpart)
data(iris)
evaluator <- function(subset) {
#k-fold cross validation
k <- 5
splits <- runif(nrow(iris))
results = sapply(1:k, function(i) {
test.idx <- (splits >= (i - 1) / k) & (splits < i / k)
train.idx <- !test.idx
test <- iris[test.idx, , drop=FALSE]
train <- iris[train.idx, , drop=FALSE]
tree <- rpart(as.simple.formula(subset, "Species"), train)
error.rate = sum(test$Species != predict(tree, test, type="c")) / nrow(test)
return(1 - error.rate)
})
print(subset)
print(mean(results))
return(mean(results))
}
subset <- best.first.search(names(iris)[-5], evaluator)
f <- as.simple.formula(subset, "Species")
print(f)
[Package FSelector version 0.34 Index]