fsdam {FSDAM} | R Documentation |
FS-DAM NLDR
Description
Forward stepwise deep autoencoder-based monotone nonlinear dimension reduction.
Usage
fsdam(dat, opt_numCode = ncol(dat), opt_seed = 1, opt_model = "n", opt_gpu = 0,
opt_k = 100, opt_nEpochs = 10000,
opt_constr = c("newpenalization", "constrained", "none"),
opt_tuneParam = 10, opt_penfun = "mean", opt_ortho = 1, opt_earlystop = "no",
verbose = FALSE)
## S3 method for class 'fsdam'
plot(x, which=c("mse", "history", "decoder.func", "scatterplot"),
k=NULL, dim.1=NULL, dim.2=NULL, col.predict=2, ...)
Arguments
dat |
data frame. |
opt_numCode |
number of components to extract |
opt_seed |
seed for torch |
opt_model |
n for newpenalization |
opt_gpu |
zero-based index of gpu to be used among all gpus. If negative, then no gpu is used |
opt_k |
number of nodes in the coding/decoding layers |
opt_nEpochs |
number of epochs for training |
opt_constr |
constraint string |
opt_tuneParam |
tuning parameter for monotonicity penalty |
opt_penfun |
penalize sum or mean |
opt_ortho |
tuning parameter for orthogonality penalty |
opt_earlystop |
whether to stop early |
verbose |
verbose |
x |
fsdam object |
which |
which |
k |
the component to plot |
dim.1 |
index of the first variable |
dim.2 |
index of the second variable |
col.predict |
color of the predicted curve when which = scatterplot |
... |
plotting arguments |
Details
If the torch python package is not available, this function will stop.
To make sure the right python installation is used, run reticulate::use_python("/app/easybuild/software/Python/3.7.4-foss-2016b/bin/python") in R before running this function for the first time.
It is recommended that dat is scaled before calling fsdam.
References
Fong, Y, Xu, J. Multi-Stage Simultaneous Deep Autoencoder-based Monotone (MSS-DAM) Nonlinear Dimensionality Reduction Methods, Journal of Computational and Graphical Statistics, in press.
Examples
## Not run:
fit=fsdam(hvtn505tier1[1:100,-1], opt_numCode=2, verbose=TRUE)
fit
plot(fit,which="mse")
plot(fit,which="history")
## End(Not run)