TuckerFactors {FPDclustering} | R Documentation |
Choice of the number of Tucker 3 factors for FPDC
Description
An empirical way of choosing the number of factors for FPDC. The function returns a graph and a table representing the explained variability varying the number of factors.
Usage
TuckerFactors(data = NULL, k = 2)
Arguments
data |
A matrix or data frame such that rows correspond to observations and columns correspond to variables. |
k |
A numerical parameter giving the number of clusters |
Value
A table containing the explained variability varying the number of factors for units (column) and for variables (row) and the corresponding plot
Author(s)
Cristina Tortora
References
Kiers H, Kinderen A. A fast method for choosing the numbers of components in Tucker3 analysis.British Journal of Mathematical and Statistical Psychology, 56(1), 119-125, 2003.
Kroonenberg P. Applied Multiway Data Analysis. Ebooks Corporation, Hoboken, New Jersey, 2008.
Tortora C., Gettler Summa M., and Palumbo F.. Factor pd-clustering. In Lausen et al., editor, Algorithms from and for Nature and Life, Studies in Classification, Data Analysis, and Knowledge Organization DOI 10.1007/978-3-319-00035-011, 115-123, 2013.
See Also
Examples
## Not run:
# Asymmetric data set example (with shape=3).
data('asymmetric3')
xp=TuckerFactors(asymmetric3[,-1], nc = 4)
## End(Not run)
## Not run:
# Asymmetric data set example (with shape=20).
data('asymmetric20')
xp=TuckerFactors(asymmetric20[,-1], nc = 4)
## End(Not run)