Silh {FPDclustering} | R Documentation |
Probabilistic silhouette plot
Description
Graphical tool to evaluate the clustering partition.
Usage
Silh(p)
Arguments
p |
A matrix of probabilities such that rows correspond to observations and columns correspond to clusters. |
Details
The probabilistic silhouettes are an adaptation of the ones proposed by Menardi(2011) according to the following formula:
dbs_i = (log(p_{im_k}/p_{im_1}))/max_i |log(p_{im_k}/p_{im_1})|
where m_k
is such that x_i
belongs to cluster k
and m_1
is such that p_{im_1}
is maximum for m
different fromm_k
.
Value
Probabilistic silhouette plot
Author(s)
Cristina Tortora
References
Menardi G. Density-based Silhouette diagnostics for clustering methods.Statistics and Computing, 21, 295-308, 2011.
Examples
## Not run:
# Asymmetric data set silhouette example (with shape=3).
data('asymmetric3')
x<-asymmetric3[,-1]
fpdas3=FPDC(x,4,3,3)
Silh(fpdas3$probability)
## End(Not run)
## Not run:
# Asymmetric data set shiluette example (with shape=20).
data('asymmetric20')
x<-asymmetric20[,-1]
fpdas20=FPDC(x,4,3,3)
Silh(fpdas20$probability)
## End(Not run)
## Not run:
# Shiluette example with outliers.
data('outliers')
x<-outliers[,-1]
fpdout=FPDC(x,4,4,3)
Silh(fpdout$probability)
## End(Not run)
[Package FPDclustering version 2.3.1 Index]