Drsvd {FPCdpca} | R Documentation |
Distributed random svd
Description
Distributed random svd is a technology that applies random SVD to distributed computing environments.
Usage
Drsvd(data,K, nk,m,q,k)
Arguments
data |
sparse random projection matrix. |
K |
the number of distributed nodes. |
nk |
the size of subsets. |
m |
the dimension of variables. |
q |
number of additional power iterations. |
k |
the desired target rank. |
Value
MSEXrsvd |
The MSE value of Xrsvd |
MSEvrsvd |
The MSE value of vrsvd |
MSESrsvd |
The MSE value of Srsvd |
kopt |
The size of optimal subset |
Examples
K=20; nk=50; nr=10; p=8; m=5; q=5;k=4;n=K*nk;
data=X=matrix(rexp(n*p,0.8),ncol=p)
#data=matrix(c(rnorm((n-nr)*p,0,1),rpois(nr*p,100)),ncol=p)
#data=X=matrix(rpois((n-nr)*p,1),ncol=p); rexp(nr*p,1); rchisq(10000, df = 5);
#data=X=matrix(rexp(n*p,0.8),ncol=p)
Drsvd(data=data,K=K,nk=nk,m=m,q=q,k=k)
[Package FPCdpca version 0.1.0 Index]