Depca {FPCdpca} | R Documentation |
Decentralized PCA
Description
Decentralized PCA is a technology that applies decentralized PCA to distributed computing environments.
Usage
Depca(data,K,nk, eps,nit.max)
Arguments
data |
is sparse random projection matrix. |
K |
is the desired target rank. |
nk |
is the size of subsets. |
eps |
is the noise. |
nit.max |
is the repeat times. |
Value
MSEXrp,MSEvrp, MSESrp, kopt
Examples
K=20; nk=50; nr=10; p=8; k=4; n=K*nk;d=6
data=matrix(c(rnorm((n-nr)*p,0,1),rpois(nr*p,100)),ncol=p)
set.seed(1234)
eps=10^(-1);nit.max=1000
TXde=TSde=c(rep(0,5))
for (j in 1:5){
depca=Depca(data=data,K=K, nk=nk,eps=eps,nit.max=nit.max)
TXde[j]=as.numeric(depca)[1]
TSde[j]=as.numeric(depca)[2]
}
mean(TXde)
mean(TSde)
[Package FPCdpca version 0.1.0 Index]