irf {FMP} | R Documentation |
Plot item response functions for polynomial IRT models.
Description
Plot model-implied (and possibly empirical) item response function for polynomial IRT models.
Usage
irf(data, bParams, item, plotERF = TRUE, thetaEAP = NULL,
minCut = -3, maxCut = 3, NCuts = 9)
Arguments
data |
N(subjects)-by-p(items) matrix of 0/1 item response data. |
bParams |
p(items)-by-9 matrix. The first 8 columns of the matrix should contain the FMP or FUP polynomial coefficients for the p items. The 9th column contains the value of k for each item (where the item specific order of the polynomial is 2k+1). |
item |
The IRF for |
plotERF |
A logical that determines whether to plot discrete values of the empirical response function. |
thetaEAP |
If |
minCut , maxCut |
If |
NCuts |
Desired number of bins for the empirical response function. |
Author(s)
Niels Waller
Examples
NSubjects <- 2000
NItems <- 15
itmParameters <- matrix(c(
# b0 b1 b2 b3 b4 b5, b6, b7, k
-1.05, 1.63, 0.00, 0.00, 0.00, 0, 0, 0, 0, #1
-1.97, 1.75, 0.00, 0.00, 0.00, 0, 0, 0, 0, #2
-1.77, 1.82, 0.00, 0.00, 0.00, 0, 0, 0, 0, #3
-4.76, 2.67, 0.00, 0.00, 0.00, 0, 0, 0, 0, #4
-2.15, 1.93, 0.00, 0.00, 0.00, 0, 0, 0, 0, #5
-1.25, 1.17, -0.25, 0.12, 0.00, 0, 0, 0, 1, #6
1.65, 0.01, 0.02, 0.03, 0.00, 0, 0, 0, 1, #7
-2.99, 1.64, 0.17, 0.03, 0.00, 0, 0, 0, 1, #8
-3.22, 2.40, -0.12, 0.10, 0.00, 0, 0, 0, 1, #9
-0.75, 1.09, -0.39, 0.31, 0.00, 0, 0, 0, 1, #10
-1.21, 9.07, 1.20,-0.01,-0.01, 0.01, 0, 0, 2, #11
-1.92, 1.55, -0.17, 0.50,-0.01, 0.01, 0, 0, 2, #12
-1.76, 1.29, -0.13, 1.60,-0.01, 0.01, 0, 0, 2, #13
-2.32, 1.40, 0.55, 0.05,-0.01, 0.01, 0, 0, 2, #14
-1.24, 2.48, -0.65, 0.60,-0.01, 0.01, 0, 0, 2),#15
15, 9, byrow=TRUE)
ex1.data<-genFMPData(NSubj = NSubjects, bParams = itmParameters,
seed = 345)$data
## compute initial theta surrogates
thetaInit <- svdNorm(ex1.data)
## For convenience we assume that the item parameter
## estimates equal their population values. In practice,
## item parameters would be estimated at this step.
itmEstimates <- itmParameters
## calculate eap estimates for mixed models
thetaEAP <- eap(data = ex1.data, bParams = itmEstimates, NQuad = 21,
priorVar = 2,
mintheta = -4, maxtheta = 4)
## plot irf and erf for item 1
irf(data = ex1.data, bParams = itmEstimates,
item = 1,
plotERF = TRUE,
thetaEAP)
## plot irf and erf for item 12
irf(data = ex1.data, bParams = itmEstimates,
item = 12,
plotERF = TRUE,
thetaEAP)