FLLat.BIC {FLLat} | R Documentation |
Optimal Tuning Parameters for the Fused Lasso Latent Feature Model
Description
Returns the optimal values of the fused lasso tuning parameters for the Fused Lasso Latent Feature (FLLat) model by minimizing the BIC. Also returns the fitted FLLat model for the optimal values of the tuning parameters.
Usage
FLLat.BIC(Y, J=min(15,floor(ncol(Y)/2)), B="pc", thresh=10^(-4), maxiter=100,
maxiter.B=1, maxiter.T=1)
Arguments
Y |
A matrix of data from an aCGH experiment (usually in the form of log intensity ratios) or some other type of copy number data. Rows correspond to the probes and columns correspond to the samples. |
J |
The number of features in the FLLat model. The default is
the smaller of either |
B |
The initial values for the features. Can be one of
|
thresh |
The threshold for determining when the solutions have
converged. The default is |
maxiter |
The maximum number of iterations for the outer loop of
the FLLat algorithm. The default is |
maxiter.B |
The maximum number of iterations for the inner loop
of the FLLat algorithm for estimating the features |
maxiter.T |
The maximum number of iterations for the inner loop
of the FLLat algorithm for estimating the weights |
Details
This function returns the optimal values of the fused lasso tuning
parameters, \lambda_1
and \lambda_2
, for the FLLat model.
The optimal values are chosen by first
re-parameterizing \lambda_1
and \lambda_2
in terms of
\lambda_0
and a proportion \alpha
such that
\lambda_1=\alpha\lambda_0
and
\lambda_2=(1-\alpha)\lambda_0
.
The values of \alpha
are fixed to be
\{0.1, 0.3, 0.5, 0.7, 0.9\}
and for
each value of \alpha
we consider a range of \lambda_0
values. The optimal values of \lambda_0
and \alpha
(and
consequently \lambda_1
and \lambda_2
) are chosen by
minimizing the following BIC-type criterion over this two dimensional grid:
(SL)\times\log\left(\frac{RSS}{SL}\right) +
k_{\alpha,\lambda_0}\log(SL),
where S
is the number of samples,
L
is the number probes, RSS
denotes the residual sum of
squares and k_{\alpha, \lambda_0}
denotes the sum over all the
features of the number of unique non-zero elements in each estimated
feature.
Note that for extremely large data sets, this function may take some time to run.
For more details, please see Nowak and others (2011) and the package vignette.
Value
A list with components:
lam0 |
The optimal value of |
alpha |
The optimal value of |
lam1 |
The optimal value of |
lam2 |
The optimal value of |
opt.FLLat |
The fitted FLLat model for the optimal values of the tuning parameters. |
Author(s)
Gen Nowak gen.nowak@gmail.com, Trevor Hastie, Jonathan R. Pollack, Robert Tibshirani and Nicholas Johnson.
References
G. Nowak, T. Hastie, J. R. Pollack and R. Tibshirani. A Fused Lasso Latent Feature Model for Analyzing Multi-Sample aCGH Data. Biostatistics, 2011, doi: 10.1093/biostatistics/kxr012
See Also
Examples
## Load simulated aCGH data.
data(simaCGH)
## Run FLLat.BIC to choose optimal tuning parameters for J = 5 features.
result.bic <- FLLat.BIC(simaCGH,J=5)
## Plot the features for the optimal FLLat model.
plot(result.bic$opt.FLLat)
## Plot a heatmap of the weights for the optimal FLLat model.
plot(result.bic$opt.FLLat,type="weights")