FGalgorithm {FGalgorithm} | R Documentation |
Flury and Gautschi algorithms
Description
Find the orthogonal matrix B_0
such that minimize \Phi(B)
.
Usage
FGalgorithm(eF, eG, p, n , A)
Arguments
eF , eG |
small positive constants controlling error terms. |
p |
dimensionality. |
n |
a numeric vector containing the positive integers. |
A |
a list of length k of positive definite symmetric matrices. |
Value
Orthogonal matrix B_0
such that minimize \Phi
with respect to the group of orthogonal matrices B
.
Author(s)
Dariush Najarzadeh
References
Flury, B. N., & Gautschi, W. (1986). An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form. SIAM Journal on Scientific and Statistical Computing, 7(1), 169-184.
Examples
n<-numeric(3)
n[[1]]<-50
n[[2]]<-50
n[[3]]<-50
A<-vector("list",length=3)
A[[1]]<-var(iris[51:100,1:4])
A[[2]]<-var(iris[101:150,1:4])
A[[3]]<-var(iris[1:50,1:4])
B0<-FGalgorithm(1e-5,1e-5,4,n,A)
B0
[Package FGalgorithm version 1.0 Index]