confint.fe.prov {FEprovideR} | R Documentation |
Compute confidence intervals for fitted model
Description
confint.fe.prov
computes the (1-alpha)% confidence intervals for the fixed
effect parameter estimates. Go to
Github for a tutorial.
Usage
## S3 method for class 'fe.prov'
confint(object, parm = "all", level = 0.95, data,
Y.char, Z.char, prov.char, ...)
Arguments
object |
fitted model object (fit using |
parm |
provider IDs for which confidence intervals are desired. The default
is |
level |
confidence level (default is |
data |
prepared |
Y.char |
Y.char name of the response variable from |
Z.char |
Z.char names of covariates from |
prov.char |
name of provider IDs variable as a character string |
... |
extra arguments to be passed to confint |
Value
Returns a data.frame
of gamma and SRR lower and upper CI bounds. Each row is a
parameter, each column gives a different bound.
References
He, K., Kalbfleisch, J.D., Li, Y. and Li, Y., 2013. Evaluating hospital readmission rates in dialysis facilities; adjusting for hospital effects. Lifetime data analysis, 19(4), pp.490-512.
See Also
fe.data.prep
, fe.prov
, test.fe.prov
,
funnel.SRR
Examples
# Name input variables and other parameters
# a small positive number specifying stopping
# criterion of Newton-Raphson algorithm
tol <- 1e-5
Y.char <- 'Y'
prov.char <- 'prov.ID'
Z.char <- paste0('z', 1:3)
data(hospital_prepared) # build in data set
fe.ls <- fe.prov(hospital_prepared, Y.char, Z.char, prov.char, tol) # model fitting
# confidence intervals
confint.fe.prov(fe.ls, parm = "all", level = 0.95,
hospital_prepared, Y.char, Z.char, prov.char)