FEMStress.2d {FEA} | R Documentation |
FEMStress.2d
Description
Creates a complete finite element model using stress for a given 2D mesh under specified boundary conditions (constrain and load).
Usage
FEMStress.2d(meshP, meshT, centroid, BoundConx, BoundCony, SFShear,
SFTensile, Length, area, Fx, Fy, Y, Nu, Thick)
Arguments
meshP |
Matrix (2 x n) containing coordinate points of the mesh nodes. |
meshT |
Matrix (3 x n) containing the number of the coordinate point that forms a given triangle within the mesh. |
centroid |
Matrix (2 x n) containing coordinate points of the centroid of each triangular element. |
BoundConx |
Boundary constraint for nodes in the x-direction |
BoundCony |
Boundary constraint for nodes in the y-direction |
SFShear |
Magnitude of positive shear traction; if there is no surface traction then SFShear = 0 |
SFTensile |
Magnitude of tensile surface traction; if there is no surface traction then SFTensile = 0 |
Length |
Truss length |
area |
Triangle element area |
Fx |
Load vector for the x-direction |
Fy |
Load vector for the y-direction |
Y |
Value of Young's (Elastic) modulus |
Nu |
Value of Poisson's ratio |
Thick |
Value of the thickness of the mesh, a value must be given. |
Value
Completes the FEM to generate values of stress and strain and nodal displacement.
NodeDisplacement |
Node displacement on each axis |
LocalStress |
Stress as calucated from stress, strain, and stress from strain. Three (3) [3 x n] matrices where [x, y, tau] |
Examples
data(triMesh)
data(dime)
meshP = triMesh$MeshPts$p
meshT = triMesh$MeshPts$T
centroid = triMesh$Centroids
Y = matrix(20e9, nrow = NROW(meshT))
Nu = matrix(0.45, nrow = NROW(meshT))
Thick = 0.001
DOF = 6
BoundConx = BoundCony = numeric(NROW(meshP))
BoundConx[1:NROW(meshP)] = BoundCony[1:NROW(meshP)] = 1
BoundConx[c(10, 11, 12)] = BoundCony[c(10, 11, 12)] = 0
SFShear = 0
SFTensile = 0
Length = dime$TrussLength
area = dime$Area
Fx = 10
Fy = 10
fea_stress = FEMStress.2d(meshP, meshT, centroid, BoundConx, BoundCony, SFShear, SFTensile,
Length, area, Fx, Fy, Y, Nu, Thick)