| FCVARlikeGrid {FCVAR} | R Documentation | 
Grid Search to Maximize Likelihood Function
Description
FCVARlikeGrid performs a grid-search optimization
by calculating the likelihood function
on a grid of candidate parameter values.
This function evaluates the likelihood over a grid of values
for c(d,b) (or phi).
It can be used when parameter estimates are sensitive to
starting values to give an approximation of the global maximum that can
then be used as the starting value in the numerical optimization in
FCVARestn.
plot.FCVAR_grid plots the likelihood function from FCVARlikeGrid.
Usage
FCVARlikeGrid(x, k, r, opt)
Arguments
x | 
 A matrix of variables to be included in the system.  | 
k | 
 The number of lags in the system.  | 
r | 
 The cointegrating rank.  | 
opt | 
 An S3 object of class   | 
Value
An S3 object of type FCVAR_grid containing the optimization results,
including the following parameters:
paramsA vector
paramsofdandb(andmuif level parameter is selected) corresponding to a maximum over the grid ofc(d,b)orphi.dbHatStarA vector of
dandbcorresponding to a maximum over the grid ofc(d,b)orphi.muHatStarA vector of the optimal
muif level parameter is selected.Grid2dAn indicator for whether or not the optimization is conducted over a 2-dimensional parameter space, i.e. if there is no equality restriction on
dandb.dGridA vector of the grid points in the parameter
d, after any transformations for restrictions, if any.bGridA vector of the grid points in the parameter
b, after any transformations for restrictions, if any.dGrid_origA vector of the grid points in the parameter
d, in units of the fractional integration parameter.bGrid_origA vector of the grid points in the parameter
b, in units of the fractional integration parameter.likeThe maximum value of the likelihood function over the chosen grid.
kThe number of lags in the system.
rThe cointegrating rank.
optAn S3 object of class
FCVAR_optthat stores the chosen estimation options, generated fromFCVARoptions().
Note
If opt$LocalMax == 0, FCVARlikeGrid returns the parameter values
corresponding to the global maximum of the likelihood on the grid.
If opt$LocalMax == 1, FCVARlikeGrid returns the parameter values for the
local maximum corresponding to the highest value of b. This
alleviates the identification problem mentioned in Johansen and
Nielsen (2010, section 2.3).
References
Johansen, S. and M. Ø. Nielsen (2010). "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics 158, 51-66.
See Also
FCVARoptions to set default estimation options.
plot.FCVAR_grid plots the likelihood function from FCVARlikeGrid.
Other FCVAR auxiliary functions: 
FCVARforecast(),
FCVARsimBS(),
FCVARsim(),
FracDiff(),
plot.FCVAR_grid()
Examples
# Restrict equality of fractional parameters.
opt <- FCVARoptions()
opt$dbStep1D     <- 0.2 # Coarser grid for plotting example.
opt$dbMin        <- c(0.01, 0.01) # Set lower bound for d,b.
opt$dbMax        <- c(2.00, 2.00) # Set upper bound for d,b.
opt$constrained  <- 0 # impose restriction dbMax >= d >= b >= dbMin ? 1 <- yes, 0 <- no.
opt$restrictDB   <- 1 # impose restriction d=b ? 1 <- yes, 0 <- no.
opt$progress     <- 2 # Show progress report on each value of b.
x <- votingJNP2014[, c("lib", "ir_can", "un_can")]
likeGrid_params <- FCVARlikeGrid(x, k = 2, r = 1, opt)
plot(likeGrid_params)
# Linear restriction on fractional parameters.
opt <- FCVARoptions()
opt$dbStep1D     <- 0.2 # Coarser grid for plotting example.
opt$dbMin        <- c(0.01, 0.01) # Set lower bound for d,b.
opt$dbMax        <- c(2.00, 2.00) # Set upper bound for d,b.
opt$constrained  <- 0 # impose restriction dbMax >= d >= b >= dbMin ? 1 <- yes, 0 <- no.
opt$restrictDB   <- 0 # impose restriction d=b ? 1 <- yes, 0 <- no.
# Impose linear restriction on d and b:
opt$R_psi        <- matrix(c(2, -1), nrow = 1, ncol = 2)
opt$r_psi        <- 0.5
opt$progress     <- 2 # Show progress report on each value of b.
x <- votingJNP2014[, c("lib", "ir_can", "un_can")]
likeGrid_params <- FCVARlikeGrid(x, k = 2, r = 1, opt)
plot(likeGrid_params)
# Constrained 2-dimensional optimization.
# Impose restriction dbMax >= d >= b >= dbMin.
opt <- FCVARoptions()
opt$dbStep1D     <- 0.2 # Coarser grid for plotting example.
opt$dbStep2D     <- 0.2 # Coarser grid for plotting example.
opt$dbMin        <- c(0.01, 0.01) # Set lower bound for d,b.
opt$dbMax        <- c(2.00, 2.00) # Set upper bound for d,b.
opt$constrained  <- 1 # impose restriction dbMax >= d >= b >= dbMin ? 1 <- yes, 0 <- no.
opt$restrictDB   <- 0 # impose restriction d=b ? 1 <- yes, 0 <- no.
opt$progress     <- 2 # Show progress report on each value of b.
x <- votingJNP2014[, c("lib", "ir_can", "un_can")]
likeGrid_params <- FCVARlikeGrid(x, k = 2, r = 1, opt)
# Unconstrained 2-dimensional optimization.
opt <- FCVARoptions()
opt$dbStep1D     <- 0.1 # Coarser grid for plotting example.
opt$dbStep2D     <- 0.2 # Coarser grid for plotting example.
opt$dbMin        <- c(0.01, 0.01) # Set lower bound for d,b.
opt$dbMax        <- c(2.00, 2.00) # Set upper bound for d,b.
opt$constrained  <- 0 # impose restriction dbMax >= d >= b >= dbMin ? 1 <- yes, 0 <- no.
opt$restrictDB   <- 0 # impose restriction d=b ? 1 <- yes, 0 <- no.
opt$progress     <- 2 # Show progress report on each value of b.
x <- votingJNP2014[, c("lib", "ir_can", "un_can")]
likeGrid_params <- FCVARlikeGrid(x, k = 2, r = 1, opt)