| FCVARestn {FCVAR} | R Documentation |
Estimate FCVAR model
Description
FCVARestn estimates the Fractionally Cointegrated VAR model.
It is the central function in the FCVAR package with several nested functions, each
described below. It estimates the model parameters, calculates the
standard errors and the number of free parameters, obtains the residuals
and the roots of the characteristic polynomial.
print.FCVARestn prints the estimation results from
the output of FCVARestn.
Usage
FCVARestn(x, k, r, opt)
Arguments
x |
A matrix of variables to be included in the system. |
k |
The number of lags in the system. |
r |
The cointegrating rank. |
opt |
An S3 object of class |
Value
An S3 object of class FCVAR_model containing the estimation results,
including the following parameters:
startValsStarting values used for optimization.
optionsEstimation options.
likeModel log-likelihood.
coeffsParameter estimates.
rankJRank of Jacobian for the identification condition.
fpNumber of free parameters.
SEStandard errors.
NegInvHessianNegative of inverse Hessian matrix.
ResidualsModel residuals.
cPolyRootsRoots of characteristic polynomial.
printVarsAdditional variables required only for printing the output of
FCVARestnto screen.kThe number of lags in the system.
rThe cointegrating rank.
pThe number of variables in the system.
cap_TThe sample size.
optAn S3 object of class
FCVAR_optthat stores the chosen estimation options, generated fromFCVARoptions().
See Also
FCVARoptions to set default estimation options.
FCVARestn calls this function at the start of each estimation to verify
validity of options.
summary.FCVAR_model prints the output of FCVARestn to screen.
Other FCVAR estimation functions:
FCVARoptions(),
summary.FCVAR_model()
Examples
opt <- FCVARoptions()
opt$gridSearch <- 0 # Disable grid search in optimization.
opt$dbMin <- c(0.01, 0.01) # Set lower bound for d,b.
opt$dbMax <- c(2.00, 2.00) # Set upper bound for d,b.
opt$constrained <- 0 # Impose restriction dbMax >= d >= b >= dbMin ? 1 <- yes, 0 <- no.
x <- votingJNP2014[, c("lib", "ir_can", "un_can")]
m1 <- FCVARestn(x, k = 2, r = 1, opt)
opt1 <- opt
opt1$R_psi <- matrix(c(1, 0), nrow = 1, ncol = 2)
opt1$r_psi <- 1
m1r1 <- FCVARestn(x, k = 2, r = 1, opt1)
opt1 <- opt
opt1$R_Beta <- matrix(c(1, 0, 0), nrow = 1, ncol = 3)
m1r2 <- FCVARestn(x, k = 2, r = 1, opt1)
opt1 <- opt
opt1$R_Alpha <- matrix(c(0, 1, 0), nrow = 1, ncol = 3)
m1r4 <- FCVARestn(x, k = 2, r = 1, opt1)