FBN.valueCenter {FBN} | R Documentation |
The SNP normalization function
Description
Normalization of the raw SNP microarray values, by multiplication (on linear scale) or addition (in log scale)
of all the raw SNP values with the normalization factor.
The normalization factor is estimated such that it brings the normalizingValue
of the raw
SNP values onto the nominalValueCN
.
Usage
FBN.valueCenter(inputData, normalizingValue, nominalValueCN,
logScale)
FBN.valueCenter(inputData = NULL, normalizingValue = NULL,
nominalValueCN = 2, logScale = FALSE)
Arguments
inputData |
The vector of raw SNP values, as they come out from, e.g. Circular Binary Segmentation in |
normalizingValue |
The value representing the center of the cluster identified as having a certain CN |
nominalValueCN |
The nominal value representing a certain CN on which the |
logScale |
A logical value, specifying wether the data is on linear ( |
Details
The nominalValueCN
is a real value representing the CN, e.g. CN=2
has a nominalValueCN
of 2,
but all other CN=n
(n
!= 2) will have a nominalValueCN
different from n
.
Such nominalValueCN
is identified by the FBN.kmeans
function.
Value
Returns a vector containing the normalized values of the inputData
Author(s)
Adrian Andronache adi.andronache@gmail.com
Luca Agnelli luca.agnelli@gmail.com
See Also
Examples
require(stats)
require(graphics)
x = c(rnorm(1000, 1, .1), rnorm(1000, 1.5, .1))
y = FBN.valueCenter(x, normalizingValue = 1, nominalValueCN = 2,
logScale = FALSE)
par(mfrow = c(2, 1), new = FALSE)
h = hist(x)
par(new = TRUE)
plot(1, 0, col = 'red', xlim = c(min(h$breaks), max(h$breaks)),
ylim = c(0,max(h$counts)), xlab = NA, ylab = NA)
par(new = FALSE)
h = hist(y)
par(new = TRUE)
plot(2, 0, col = 'red', xlim = c(min(h$breaks), max(h$breaks)),
ylim = c(0,max(h$counts)), xlab = NA, ylab = NA)