FBMS-package {FBMS}R Documentation

Flexible Bayesian Model Selection and Model Averaging

Description

Implements MJMCMC (mode jumping MCMC) described in Hubin and Storvik (2018) <doi:10.1016/j.csda.2018.05.020> and GMJMCMC (genetically modified MJMCMC) described in Hubin et al. (2021) <doi:10.1613/jair.1.13047> algorithms as well as the subsampling counterpart described in Lachmann et al. (2022) <doi:10.1016/j.ijar.2022.08.018> for flexible Bayesian model selection and model averaging.

Author(s)

Maintainer: Jon Lachmann jon@lachmann.nu

Authors:

Other contributors:

References

Lachmann, J., Storvik, G., Frommlet, F., & Hubin, A. (2022). A subsampling approach for Bayesian model selection. International Journal of Approximate Reasoning, 151, 33-63. Elsevier.

Hubin, A., Storvik, G., & Frommlet, F. (2021). Flexible Bayesian Nonlinear Model Configuration. Journal of Artificial Intelligence Research, 72, 901-942.

Hubin, A., Frommlet, F., & Storvik, G. (2021). Reversible Genetically Modified MJMCMC. Under review in EYSM 2021.

Hubin, A., & Storvik, G. (2018). Mode jumping MCMC for Bayesian variable selection in GLMM. Computational Statistics & Data Analysis, 127, 281-297. Elsevier.


[Package FBMS version 1.0 Index]