mle {FAmle} | R Documentation |
Maximum Likelihood Estimation of Univariate Probability Distributions
Description
For a given dataset, this function serves to find maximum likelihood parameter estimates for some specified parametric probability distribution.
Usage
mle(x, dist, start = NULL, method = "Nelder-Mead")
Arguments
x |
A univariate dataset (a vector). |
dist |
Distribution to be fitted to |
start |
Starting parameter values for the optimization algorithm (see |
method |
The optimization method to be used (see |
Value
fit |
|
x.info |
Array that contains the following columns:
|
dist |
Distribution fitted to |
par.hat |
Vector of estiamted parameters. |
cov.hat |
Observed Fisher's information matrix. |
k |
Number of parameters |
n |
Number of observations (i.e., |
log.like |
Log-likelihood value evaluated at the estimated parameter (i.e. |
aic |
Akaike information criterion computed as |
ad |
Anderson Darling statistic evaluated at the estimated parameter values. |
data.name |
Name for |
rho |
Pearson's correlation coefficient computed as |
See Also
optim
, distr
, boot.mle
, metropolis
, Q.conf.int
Examples
data(yarns)
x <- yarns$x
fit.x <- mle(x,'weibull',c(.1,.1))
fit.x
names(fit.x)
#plot(fit.x)
#plot(fit.x,TRUE,alpha=.01)
p <- c(.9,.95,.99)
distr(p,model=fit.x,type='q')
Q.conf.int(p,fit.x,.01)
Q.conf.int(p,fit.x,.01,TRUE)