glmFAB {FABInference} | R Documentation |
FAB inference for generalized linear models
Description
asymptotic FAB p-values and confidence intervals for parameters in generalized linear regression models
Usage
glmFAB(cformula, FABvars, lformula = NULL, alpha = 0.05,
silent = FALSE, ...)
Arguments
cformula |
formua for the control variables |
FABvars |
matrix of regressors for which to make FAB p-values and CIs |
lformula |
formula for the lining model (just specify right-hand side) |
alpha |
error rate for CIs (1-alpha CIs will be constructed) |
silent |
show progress (TRUE) or not (FALSE) |
... |
additional arguments to be passed to |
Value
an object of the class glmFAB
which inherits from glm
Author(s)
Peter Hoff
Examples
# n observations, p FAB variables, q=2 control variables
n<-100 ; p<-25
# X is design matrix for params of interest
# beta is vector of true parameter values
# v a variable in the linking model - used to share info across betas
v<-rnorm(p) ; beta<-(2 - 2*v + rnorm(p))/3 ; X<-matrix(rnorm(n*p),n,p)/8
# control coefficients and variables
alpha1<-.5 ; alpha2<- -.5
w1<-rnorm(n)/8
w2<-rnorm(n)/8
# simulate data
lp<-1 + alpha1*w1 + alpha2*w2 + X%*%beta
y<-rpois(n,exp(lp))
# fit model
fit<-glmFAB(y~w1+w2,X,~v,family=poisson)
fit$FABpv
fit$FABci
summary(fit) # look at p-value column
[Package FABInference version 0.1 Index]