fabzCI {FABInference} | R Documentation |
FAB z-interval
Description
Computation of a 1-alpha FAB z-interval
Usage
fabzCI(y, mu, t2, s2, alpha = 0.05)
Arguments
y |
a numeric scalar |
mu |
a numeric scalar |
t2 |
a positive numeric scalar |
s2 |
a positive numeric scalar |
alpha |
the type I error rate, so 1-alpha is the coverage rate |
Details
A FAB interval is the "frequentist" interval procedure
that is Bayes optimal: It minimizes the prior expected
interval width among all interval procedures with
exact 1-alpha frequentist coverage. This function computes
the FAB z-interval for the mean of a normal population with an
known variance, given a user-specified prior distribution
determined by psi
. The prior is that the population mean
is normally distributed.
Referring to the elements of psi
as mu, t2, s2, the prior and population variance are
determined as follows:
mu is the prior expectation of the mean
t2 is the prior variance of the mean
s2 is the population variance
Value
a two-dimensional vector of the left and right endpoints of the interval
Author(s)
Peter Hoff
Examples
y<-0
fabzCI(y,0,10,1)
fabzCI(y,0,1/10,1)
fabzCI(y,2,10,1)
fabzCI(y,0,1/10,1)