| rmdata {ExtremeRisks} | R Documentation |
Simulation of d-Dimensional Temporally Independent Observations
Description
Simulates samples of independent d-dimensional observations from parametric families of joint distributions with a given copula and equal marginal distributions.
Usage
rmdata (ndata, dist="studentT", copula="studentT", par)
Arguments
ndata |
A positive interger specifying the number of observations to simulate. |
dist |
A string specifying the parametric family of equal marginal distributions. By default |
copula |
A string specifying the type copula to be used. By default |
par |
A list of |
Details
For a joint multivariate distribution with a given parametric copula class (copula) and a given parametric family of equal marginal distributions (dist), a sample of size ndata is simulated.
The available copula classes are: Student-t (
copula="studentT") with\nu>0degrees of freedom (df) and scale parameters\rho_{i,j}\in (-1,1)fori \neq j=1,\ldots,d(sigma), Gaussian (copula="Gaussian") with correlation parameters\rho_{i,j}\in (-1,1)fori \neq j=1,\ldots,d(sigma), Clayton (copula="Clayton") with dependence parameter\theta>0(dep), Gumbel (copula="Gumbel") with dependence parameter\theta\geq 1(dep) and Frank (copula="Frank") with dependence parameter\theta>0(dep).The available families of marginal distributions are:
Student-t (
dist="studentT") with\nu>0degrees of freedom (df);Asymmetric Student-t (
dist="AStudentT") with\nu>0degrees of freedom (df). In this case all the observations are only positive;Frechet (
dist="Frechet") with scale\sigma>0(scale) and shape\alpha>0(shape) parameters.Frechet (
dist="double-Frechet") with scale\sigma>0(scale) and shape\alpha>0(shape) parameters. In this case positive and negative observations are allowed;symmetric Pareto (
dist="double-Pareto") with scale\sigma>0(scale) and shape\alpha>0(shape) parameters. In this case positive and negative observations are allowed.
The available classes of multivariate joint distributions are:
studentT-studentT (
dist="studentT"andcopula="studentT") with parameterspar <- list(df, sigma);studentT (
dist="studentT"andcopula="None"with parameterspar <- list(df, dim). In this case thedvariables are regarded as independent;studentT-AstudentT (
dist="AstudentT"andcopula="studentT") with parameterspar <- list(df, sigma, shape);Gaussian-studentT (
dist="studentT"andcopula="Gaussian") with parameterspar <- list(df, sigma);Gaussian-AstudentT (
dist="AstudentT"andcopula="Gaussian") with parameterspar <- list(df, sigma, shape);Frechet (
dist="Frechet"andcopula="None") with parameterspar <- list(shape, dim). In this case thedvariables are regarded as independent;Clayton-Frechet (
dist="Frechet"andcopula="Clayton") with parameterspar <- list(dep, dim, scale, shape);Gumbel-Frechet (
dist="Frechet"andcopula="Gumbel") with parameterspar <- list(dep, dim, scale, shape);Frank-Frechet (
dist="Frechet"andcopula="Frank") with parameterspar <- list(dep, dim, scale, shape);Clayton-double-Frechet (
dist="double-Frechet"andcopula="Clayton") with parameterspar <- list(dep, dim, scale, shape);Gumbel-double-Frechet (
dist="double-Frechet"andcopula="Gumbel") with parameterspar <- list(dep, dim, scale, shape);Frank-double-Frechet (
dist="double-Frechet"andcopula="Frank") with parameterspar <- list(dep, dim, scale, shape);Clayton-double-Pareto (
dist="double-Pareto"andcopula="Clayton") with parameterspar <- list(dep, dim, scale, shape);Gumbel-double-Pareto (
dist="double-Pareto"andcopula="Gumbel") with parameterspar <- list(dep, dim, scale, shape);Frank-double-Pareto (
dist="double-Pareto"andcopula="Frank") with parameterspar <- list(dep, dim, scale, shape).
Note that above
dimindicates the number ofdmarginal variables.
Value
A matrix of (n \times d) observations simulated from a specified multivariate parametric joint distribution.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, http://mypage.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@ensai.fr, http://ensai.fr/en/equipe/stupfler-gilles/
References
Joe, H. (2014). Dependence Modeling with Copulas. Chapman & Hall/CRC Press, Boca Raton, USA.
Padoan A.S. and Stupfler, G. (2020). Joint inference on extreme expectiles for multivariate heavy-tailed distributions. arXiv e-prints arXiv:2007.08944, https://arxiv.org/abs/2007.08944.
See Also
Examples
library(plot3D)
library(copula)
library(evd)
# Data simulation from a 3-dimensional random vector a with multivariate distribution
# given by a Gumbel copula and three equal Frechet marginal distributions
# distributional setting
copula <- "Gumbel"
dist <- "Frechet"
# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)
# sample size
ndata <- 1000
# Simulates a sample from a multivariate distribution with equal Frechet
# marginal distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])
# Data simulation from a 3-dimensional random vector a with multivariate distribution
# given by a Gaussian copula and three equal Student-t marginal distributions
# distributional setting
dist <- "studentT"
copula <- "Gaussian"
# parameter setting
rho <- c(0.9, 0.8, 0.7)
sigma <- c(1, 1, 1)
Sigma <- sigma^2 * diag(dim)
Sigma[lower.tri(Sigma)] <- rho
Sigma <- t(Sigma)
Sigma[lower.tri(Sigma)] <- rho
df <- 3
par <- list(sigma=Sigma, df=df)
# sample size
ndata <- 1000
# Simulates a sample from a multivariate distribution with equal Student-t
# marginal distributions and a Gaussian copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])