| rbtimeseries {ExtremeRisks} | R Documentation |
Simulation of Two-Dimensional Temporally Dependent Observations
Description
Simulates samples from parametric families of bivariate time series models.
Usage
rbtimeseries(ndata, dist="studentT", type="AR", copula="Gumbel", par, burnin=1e+03)
Arguments
ndata |
A positive interger specifying the number of observations to simulate. |
dist |
A string specifying the parametric family of the innovations distribution. By default |
type |
A string specifying the type of time series. By default |
copula |
A string specifying the type copula to be used. By default |
par |
A list of |
burnin |
A positive interger specifying the number of initial observations to discard from the simulated sample. |
Details
For a time series class (type), with a parametric family (dist) for the innovations, a sample of size ndata is simulated. See for example Brockwell and Davis (2016).
The available categories of bivariate time series models are: Auto-Regressive (
type="AR"), Auto-Regressive and Moving-Average (type="ARMA"), Generalized-Autoregressive-Conditional-Heteroskedasticity (type="GARCH") and Auto-Regressive.With AR(1) times series the available families of distributions for the innovations and the dependence structure (copula) are:
Student-t (
dist="studentT"andcopula="studentT") with marginal parameters (equal for both distributions):\phi\in(-1,1)(autoregressive coefficient),\nu>0(degrees of freedom) and dependence parameterdep\in(-1,1). The parameters are specified aspar <- list(corr, df, dep);Asymmetric Student-t (
dist="AStudentT"andcopula="studentT") with marginal parameters (equal for both distributions):\phi\in(-1,1)(autoregressive coefficient),\nu>0(degrees of freedom) and dependence parameterdep\in(-1,1). The paraters are specified aspar <- list(corr, df, dep). Note that in this case the tail index of the lower and upper tail of the first marginal are different, see Padoan and Stupfler (2020) for details;
With ARMA(1,1) times series the available families of distributions for the innovations and the dependence structure (copula) are:
symmetric Pareto (
dist="double-Pareto"andcopula="Gumbel"orcopula="Gaussian") with marginal parameters (equal for both distributions):\phi\in(-1,1)(autoregressive coefficient),\sigma>0(scale),\alpha>0(shape),\theta(movingaverage coefficient), and dependence parameterdep(dep>0ifcopula="Gumbel"ordep\in(-1,1)ifcopula="Gaussian"). The parameters are specified aspar <- list(corr, scale, shape, smooth, dep).symmetric Pareto (
dist="double-Pareto"andcopula="Gumbel"orcopula="Gaussian") with marginal parameters (equal for both distributions):\phi\in(-1,1)(autoregressive coefficient),\sigma>0(scale),\alpha>0(shape),\theta(movingaverage coefficient), and dependence parameterdep(dep>0ifcopula="Gumbel"ordep\in(-1,1)ifcopula="Gaussian"). The parameters are specified aspar <- list(corr, scale, shape, smooth, dep). Note that in this case the tail index of the lower and upper tail of the first marginal are different, see Padoan and Stupfler (2020) for details;
With ARCH(1)/GARCH(1,1) time series the distribution of the innovations are symmetric Gaussian (
dist="Gaussian") or asymmetric Gaussiandist="AGaussian". In both cases the marginal parameters (equal for both distributions) are:\alpha_0,\alpha_1,\beta. In the asymmetric Gaussian case the tail index of the lower and upper tail of the first marginal are different, see Padoan and Stupfler (2020) for details. The available copulas are: Gaussian (copula="Gaussian") with dependence parameterdep\in(-1,1), Student-t (copula="studentT") with dependence parametersdep\in(-1,1)and\nu>0(degrees of freedom), Gumbel (copula="Gumbel") with dependence parameterdep>0. The parameters are specified aspar <- list(alpha0, alpha1, beta, dep)orpar <- list(alpha0, alpha1, beta, dep, df).
Value
A vector of (2 \times n) observations simulated from a specified bivariate time series model.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, http://mypage.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@ensai.fr, http://ensai.fr/en/equipe/stupfler-gilles/
References
Brockwell, Peter J., and Richard A. Davis. (2016). Introduction to time series and forecasting. Springer.
Padoan A.S. and Stupfler, G. (2020). Extreme expectile estimation for heavy-tailed time series. arXiv e-prints arXiv:2004.04078, https://arxiv.org/abs/2004.04078.
See Also
Examples
# Data simulation from a 2-dimensional AR(1) with bivariate Student-t distributed
# innovations, with one marginal distribution whose lower and upper tail indices
# that are different
tsDist <- "AStudentT"
tsType <- "AR"
tsCopula <- "studentT"
# parameter setting
corr <- 0.8
dep <- 0.8
df <- 3
par <- list(corr=corr, dep=dep, df=df)
# sample size
ndata <- 2500
# Simulates a sample from an AR(1) model with Student-t innovations
data <- rbtimeseries(ndata, tsDist, tsType, tsCopula, par)
# Extreme expectile estimation
plot(data, pch=21)
plot(data[,1], type="l")
plot(data[,2], type="l")