| estExtLevel {ExtremeRisks} | R Documentation |
Extreme Level Estimation
Description
Estimates the expectile's extreme level corresponding to a quantile's extreme level.
Usage
estExtLevel(alpha_n, data=NULL, gammaHat=NULL, VarGamHat=NULL, tailest="Hill", k=NULL,
var=FALSE, varType="asym-Dep", bigBlock=NULL, smallBlock=NULL, alpha=0.05)
Arguments
alpha_n |
A real in |
data |
A vector of |
gammaHat |
A real specifying an estimate of the tail index. By default |
VarGamHat |
A real specifying an estimate of the variance of the tail index estimate. By default |
tailest |
A string specifying the type of tail index estimator to be used. By default |
k |
An integer specifying the value of the intermediate sequence |
var |
If |
varType |
A string specifying the asymptotic variance to compute. By default |
bigBlock |
An interger specifying the size of the big-block used to estimaste the asymptotic variance. See Details. |
smallBlock |
An interger specifying the size of the small-block used to estimaste the asymptotic variance. See Details. |
alpha |
A real in |
Details
For a given extreme level \alpha_n for the \alpha_n-th quantile, an estimate of the extreme level \tau_n'(\alpha_n) is computed such that \xi_{\tau_n'(\alpha_n)}=q_{\alpha_n}. The estimator is defined by
\hat{\tau}_n'(\alpha_n) = 1 - (1 - \alpha_n)\frac{\hat{\gamma}_n}{1-\hat{\gamma}_n}
where \hat{\gamma}_n is a consistent estimator of the tail index \gamma. If a value for the parameter gammaHat is given, then such a value is used to compute \hat{\tau}_n'. If gammaHat is NULL and a dataset is provided through the parameter data, then the tail index \gamma is estimated by a suitable estimator \hat{\gamma}_n. See Section 6 in Padoan and Stupfler (2020) for more details.
If
VarGamHatis specified, i.e. the variance of the tail index estimator, then the variance of the extreme level estimator\hat{\tau}_n'is computed by using such value.When estimating the tail index, if
tailest='Hill'then\gammais estimated using the Hill estimator (see also HTailIndex). Iftailest='ML'then\gammais estimated using the Maximum Likelihood estimator (see MLTailIndex). Iftailest='ExpBased'then\gammais estimated using the expectile based estimator (see EBTailIndex). Iftailest='Moment'then\gammais estimated using the moment based estimator (see MomTailIndex). See Padoan and Stupfler (2020) for details.-
kork_nis the value of the so-called intermediate sequencek_n,n=1,2,\ldots. Its represents a sequence of positive integers such thatk_n \to \inftyandk_n/n \to 0asn \to \infty. Practically, whentailest="Hill"then the valuek_nspecifies the number ofk+1larger order statistics to be used to estimate\gammaby the Hill estimator. See MLTailIndex, EBTailIndex and MomTailIndex for the other estimators. If
var=TRUEthen the asymptotic variance of the extreme level estimator is computed by applying the delta method, i.e.Var(\tau_n') = Var(\hat{\gamma}_n) * (\alpha_n-1)^2 / (1-\hat{\gamma}_n)^4where
Var(\hat{\gamma}_nis provided byVarGamHator is estimated when esitmating the tail index throughtailest='Hill'andtailest='ML'. See HTailIndex and MLTailIndex for details on how the variance is computed.Given a small value
\alpha\in (0,1)then an asymptotic confidence interval for the extreme level,\tau_n'(\alpha_n), with approximate nominal confidence level(1-\alpha)100\%is computed.
Value
A list with elements:
-
tauHat: an estimate of the extreme level\tau_n'; -
tauVar: an estimate of the asymptotic variance of the extreme level estimator\hat{\tau}_n'(\alpha_n); -
tauCI: an estimate of the approximate(1-\alpha)100\%confidence interval for the extreme level\tau_n'(\alpha_n).
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, http://mypage.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@ensai.fr, http://ensai.fr/en/equipe/stupfler-gilles/
References
Padoan A.S. and Stupfler, G. (2020). Extreme expectile estimation for heavy-tailed time series. arXiv e-prints arXiv:2004.04078, https://arxiv.org/abs/2004.04078.
Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles. Journal of the Royal Statistical Society: Series B, 80, 263-292.
See Also
estExpectiles, predExpectiles, extQuantile
Examples
# Extreme level estimation for a given quantile's extreme level alpha_n
# obtained with 1-dimensional data simulated from an AR(1) with Student-t innovations
tsDist <- "studentT"
tsType <- "AR"
# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)
# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15
# quantile's extreme level
alpha_n <- 0.999
# sample size
ndata <- 2500
# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)
# expectile's extreme level estimation
tau1Hat <- estExtLevel(alpha_n, data, var=TRUE, k=150, bigBlock=bigBlock,
smallBlock=smallBlock)
tau1Hat