MomTailIndex {ExtremeRisks} R Documentation

## Moment based Tail Index Estimation

### Description

Computes a point estimate of the tail index based on the Moment Based (MB) estimator.

### Usage

MomTailIndex(data, k)


### Arguments

 data A vector of (1 \times n) observations. k An integer specifying the value of the intermediate sequence k_n. See Details.

### Details

For a dataset data of sample size n, the tail index \gamma of its (marginal) distribution is computed by applying the MB estimator. The observations can be either independent or temporal dependent. For details see de Haan and Ferreira (2006).

• k or k_n is the value of the so-called intermediate sequence k_n, n=1,2,\ldots. Its represents a sequence of positive integers such that k_n \to \infty and k_n/n \to 0 as n \to \infty. Practically, the value k_n specifies the number of k+1 larger order statistics to be used to estimate \gamma.

### Value

An estimate of the tail index \gamma.

### References

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag, New York.

### Examples

# Tail index estimation based on the Moment estimator obtained with
# 1-dimensional data simulated from an AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallblock <- 15

# Number of larger order statistics
k <- 150

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation
gammaHat <- MomTailIndex(data, k)
gammaHat


[Package ExtremeRisks version 0.0.4 Index]