simplex {ExtremalDep} | R Documentation |
Definition of a multivariate simplex
Description
Generation of grid points over the multivariate simplex
Usage
simplex(d, n=50, a=0, b=1)
Arguments
d |
A positive integer indicating the dimension of the simplex. |
n |
A positive integer indicating the number of grid points to be generated on the univariate components of the simplex. |
a , b |
Two numeric values indicating the lower and upper bound of the simplex. By default |
Details
A d
-dimensional simplex is defined by
S = \{ (\omega_1, \ldots, \omega_d) \in R^d_+: \sum_{i=1}^d \omega_i = 1 \}.
Here the function defines the simplex as
S = \{ (\omega_1, \ldots, \omega_d) \in [a,b]^d: \sum_{i=1}^d \omega_i = 1 \}.
When d=2
and [a,b]=[0,1]
, a grid of points of the form \{ (\omega_1, \omega_2) \in [0,1]: \omega_1 + \omega_2 = 1 \}
.
Value
Returns a matrix with d
columns. When d=2
, the number of rows is n
.
When d>2
, the number of rows is equal to
\sum_{i_{d-1}=0}^{n-1} \sum_{i_{d-2}=0}^{n-i_{d-1}} \cdots \sum_{i_{1}=1}^{n-i_{d-1}-\cdots-i_{2}} i_{1}
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
Examples
### 3-dimensional unit simplex
W <- simplex(d=3, n=10)
plot(W[,-3], pch=16)