rExtDepSpat {ExtremalDep} | R Documentation |
Random generation of max-stable processes
Description
This function generates realisations from a max-stable process.
Usage
rExtDepSpat(n, coord, model="SCH", cov.mod = "whitmat", grid = FALSE,
control = list(), cholsky = TRUE, ...)
Arguments
n |
An integer indictaing the number of observations. |
coord |
A vector or matrix corresponding to the coordinates of locations where the processes is simulated. Each row corresponds to a location. |
model |
A character string indicating the max-stable model. See |
cov.mod |
A character string indicating the correlation function function. See |
grid |
A logical value; |
control |
A named list with arguments |
cholsky |
A logical value; if |
... |
The parameters of the max-stable model. See |
Details
This function extends the rmaxstab
function from the SpatialExtremes
package in two ways:
1. The extremal skew-t model is included.
2. The function returns the hitting scenarios, i.e. the index of which 'storm' (or process) led to the maximum value for each location and observation.
The max-stable models available in this procedure and the specifics are:
Smith model: when
model='SMI'
, does not requirecov.mod
. Ifcoord
is univariate thenvar
needs to be specified and for higher dimensions covariance parameters should be provided such ascov11
,cov12
,cov22
, etc.Schlather model: when
model='SCH'
, requirescov.mod='whitmat'
,'cauchy'
,'powexp'
or'bessel'
depending on the correlation family. Parameters'nugget'
,'range'
and'smooth'
should be specified.Extremal-t model: when
model='ET'
, requirescov.mod='whitmat'
,'cauchy'
,'powexp'
or'bessel'
depending on the correlation family. Parameters'nugget'
,'range'
,'smooth'
and'DoF'
should be specified.Extremal skew-t model: when
model='EST'
, requirescov.mod='whitmat'
,'cauchy'
,'powexp'
or'bessel'
depending on the correlation family. Parameters'nugget'
,'range'
,'smooth'
,'DoF'
,'alpha'
(a vector of length3
) and'acov1'
and'acov2'
(both vector of length the number of locations) should be specified. The skewness vector is defined as\alpha = \alpha_0 + \alpha_1 \textrm{acov1} + \alpha_2 \textrm{acov2}
.Geometric gaussian model: when
model='GG'
, requirescov.mod='whitmat'
,'cauchy'
,'powexp'
or'bessel'
depending on the correlation family. Parameters'sig2'
,'nugget'
,'range'
and'smooth'
should be specified.Brown-Resnick model: when
model='BR'
, does not requirecov.mod
. Parameters'range'
and'smooth'
should be specified.
For the argument control
, details of the list components are as follows:
method
isNULL
by default, meaning that the function tries to find the most appropriate simulation technique. Current simulation techniques are a direct approach, i.e. Cholesky decomposition of the covariance matrix, the turning bands and the circular embedding methods. Note that for the extremal skew-t model it can only take value'exact'
or'direct'
;nlines
ifNULL
then it is set to1000
;uBound
ifNULL
then it is set to reasonable values - for example3.5
for the Schlather model.
Value
A list made of
vals
: A(n \times d)
matrix containingn
observations atd
locations, from the specified max-stable model.hits
: A(n \times d)
matrix containing the hitting scenarios for each observations. On each row, elements with the same integer value indicate that the maxima at these two locations is coming from the same 'storm' or process.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
References
Beranger, B., Stephenson, A. G. and Sisson, S.A. (2021) High-dimensional inference using the extremal skew-t process Extremes, 24, 653-685.
See Also
Examples
# Generate some locations
set.seed(1)
lat <- lon <- seq(from=-5, to=5, length=20)
sites <- as.matrix(expand.grid(lat,lon))
# Example using the extremal-t
set.seed(2)
z <- rExtDepSpat(1, sites, model="ET", cov.mod="powexp", DoF=1,
nugget=0, range=3, smooth=1.5,
control=list(method="exact"))
fields::image.plot(lat, lon, matrix(z$vals,ncol=20) )
# Example using the extremal skew-t
set.seed(3)
z2 <- rExtDepSpat(1, sites, model="EST", cov.mod="powexp", DoF=5,
nugget=0, range=3, smooth=1.5, alpha=c(0,5,5),
acov1=sites[,1], acov2=sites[,2],
control=list(method="exact"))
fields::image.plot(lat, lon, matrix(z2$vals,ncol=20) )