pFailure {ExtremalDep} | R Documentation |
Probability of falling into a failure region
Description
This function computes the empirical estimate of the probability of falling into two types of failure regions.
Usage
pFailure(n, beta, u1, u2, mar1, mar2, type, plot, xlab, ylab,
nlevels=10)
Arguments
n |
An integer indicating the number of points generated to compute the empirical probability. |
beta |
A vector representing the Bernstein polynomial coefficients. |
u1 , u2 |
Vectors of positive reals representing some high thresholds. |
mar1 , mar2 |
Vectors of marginal (GEV) parameters |
type |
A character string indicating if the failure region includes at least one exceedance ( |
plot |
A logical value; if |
xlab , ylab |
A character string equivalent representing the graphical parameters as in |
nlevels |
The number of contour levels to be displayed. |
Details
The two failure regions are:
A_u = \left\{ (v_1, v_2): v_1>u_1 \textrm{ or } v_2 > u_2\right\}
and
B_u = \left\{ (v_1, v_2): v_1>u_1 \textrm{ and } v_2 > u_2\right\}
where (v_1,v_2) \in R_+^2
and u_1, u_2>0
.
Exceedances samples y_{1,1}, \ldots, y_{n_1}
and y_{1,2}, \ldots, y_{n_2}
are generating according to Algorithm 3 of Marcon et al. (2017) and the the estimates of the probability of falling in A_u
and B_u
are given by
\hat{P}_{A_u} = \frac{1}{n}\sum{i=1}^n I\left\{ y_{i,1}> u_1^* \textrm{ or } y_{i,2}> u_2^* \right\}
and
\hat{P}_{B_u} = \frac{1}{n}\sum{i=1}^n I\left\{ y_{i,1}> u_1^* \textrm{ and } y_{i,2}> u_2^* \right\}
Value
A list containing AND
and/or OR
, depending on the type
argument. Each element is a length(u1) x length(u2)
matrix.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
References
Marcon, G., Naveau, P. and Padoan, S.A. (2017) A semi-parametric stochastic generator for bivariate extreme events Stat, 6, 184-201.
See Also
dExtDep
, rExtDep
, fExtDep
, fExtDep.np
Examples
# Example wind speed and wind gust
data(WindSpeedGust)
years <- format(ParcayMeslay$time, format="%Y")
attach(ParcayMeslay[which(years %in% c(2004:2013)),])
WS_th <- quantile(WS,.9)
DP_th <- quantile(DP,.9)
pars.WS <- evd::fpot(WS, WS_th, model="pp")$estimate
pars.DP <- evd::fpot(DP, DP_th, model="pp")$estimate
data_uf <- trans2UFrechet(cbind(WS,DP), type="Empirical")
rdata <- rowSums(data_uf)
r0 <- quantile(rdata, probs=.90)
extdata <- data_uf[rdata>=r0,]
SP_mle <- fExtDep.np(method="Frequentist", data=extdata, k0=10,
type="maxima")
pF <- pFailure(n=50000, beta=SP_mle$Ahat$beta,
u1=seq(from=19, to=28, length=200), mar1=pars.WS,
u2=seq(from=40, to=60, length=200), mar2=pars.DP,
type="both", plot=TRUE,
xlab="Daily-maximum Wind Speed (m/s)",
ylab="Differential of Pressure (mbar)", nlevels=15)