fExtDep {ExtremalDep} | R Documentation |
Extremal dependence estimation
Description
This function estimates the parameters of extremal dependence models.
Usage
fExtDep(method="PPP", data, model, par.start = NULL,
c = 0, optim.method = "BFGS", trace = 0, sig = 3,
Nsim, Nbin = 0, Hpar, MCpar, seed = NULL)
Arguments
method |
A character string indicating the estimation method inlcuding |
data |
A matrix containing the data. |
model |
A character string with the name of the model. When |
par.start |
A vector representing the initial parameters values for the optimization algorithm. |
c |
A real value in |
optim.method |
A character string indicating the optimization algorithm. Required when |
trace |
A non-negative integer, tracing the progress of the optimization. Required when |
sig |
An integer indicating the number of significant digits when reporting outputs. |
Nsim |
An integer indicating the number of MCMC simulations. Required when |
Nbin |
An integer indicating the length of the burn-in period. Required when |
Hpar |
A list of hyper-parameters. See 'details'. Required when |
MCpar |
A positive real representing the variance of the proposal distirbution. See 'details'. Required when |
seed |
An integer indicating the seed to be set for reproducibility, via the routine |
Details
When method="PPP"
the approximate likelihood is used to estimate the model parameters. It relies on the dExtDep
function with argument method="Parametric"
and angular=TRUE
.
When method="BayesianPPP"
a Bayesian estimation procedure of the spatral measure is considered, following Sabourin et al. (2013) and Sabourin & Naveau (2014). The argument Hpar
is required to specify the hyper-parameters of the prior distributions, taking the following into consideration:
For the Pairwise Beta model, the parameters components are independent, log-normal. The vector of parameters is of size
choose(dim,2)+1
with positive components. The first elements are the pairiwse dependence parametersb
and the last one is the global dependence parameteralpha
. The list of hyper-parameters should be of the formmean.alpha=, mean.beta=, sd.alpha=, sd.beta=
;For the Husler-Reiss model, the parameters are independent, log-normally distributed. The elements correspond to the
lambda
parameter. The list of hyper-parameters should be of the formmean.lambda=, sd.lambda=
;For the Dirichlet model, the parameters are independent, log-normally distributed. The elements correspond to the
alpha
parameter. The list of hyper-parameters should be of the formmean.alpha=, sd.alpha=
;For the Extremal-t model, the parameters are independent, logit-squared for
rho
and log-normal formu
. The first elements correspond to the correlation parametersrho
and the last parameter is the global dependence parametermu
. The list of hyper-parameters should be of the formmean.rho=, mean.mu=, sd.rho=, sd.mu=
;For the Extremal skewt-t model, the parameters are independent, logit-squared for
rho
, normal foralpha
and log-normal formu
. The first elements correspond to the correlation parametersrho
, then the skewness parametersalpha
and the last parameter is the global dependence parametermu
. The list of hyper-parameters should be of the formmean.rho=, mean.alpha=, mean.mu=, sd.rho=, sd.alpha=, sd.mu=
;For the Asymmetric Logistic model, the parameters' components are independent, log-normal for
alpha
and logit forbeta
. The list of hyper-parameters should be of the formmean.alpha=, mean.beta=, sd.alpha=, sd.beta=
.
The proposal distribution for each (transformed) parameter is a normal distribution centred on the (transformed) current parameter value, with variance MCpar
.
When method="Composite"
, the pairwise composite likelihood is applied, based on the dExtDep
function with argument method="Parametric"
and angular=FALSE
.
Value
When method == "PPP"
or "Composite"
, a list is returned including
par
: The estimated parameters.LL
: The maximised log-likelihood.SE
: The standard errors.TIC
: The Takeuchi Information Criterion.
When method == "BayesianPPP"
, a list is returned including
stored.vales
: A(Nsim-Nbin)*d
matrix, whered
is the dimension of the parameter spacellh
: A vector of size(Nsim-Nbin)
containing the log-likelihoods evaluadted at each parameter of the posterior sample.lprior
: A vector of size(Nsim-Nbin)
containing the logarithm of the prior densities evaluated at each parameter of the posterior sample.arguments
: The specifics of the algorithm.elapsed
: The time elapsed, as given byproc.time
between the start and end of the run.Nsim
: The same as the passed argument.Nbin
: Idem.n.accept
: The total number of accepted proposals.n.accept.kept
: The number of accepted proposals after the burn-in period.emp.mean
: The estimated posterior parameters mean.emp.sd
: The empirical posterior sample standard deviation.BIC
: The Bayesian Information Criteria.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
References
Beranger, B. and Padoan, S. A. (2015). Extreme dependence models, chapater of the book Extreme Value Modeling and Risk Analysis: Methods and Applications, Chapman Hall/CRC.
Sabourin, A., Naveau, P. and Fougeres, A-L (2013) Bayesian model averaging for multivariate extremes Extremes, 16, 325-350.
Sabourin, A. and Naveau, P. (2014) Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization Computational Statistics & Data Analysis, 71, 542-567.
See Also
dExtDep
, pExtDep
, rExtDep
, fExtDep.np
Examples
# Example using the Poisson Point Proce Process appraoch
data(pollution)
f.hr <- fExtDep(method="PPP", data=PNS, model="HR",
par.start = rep(0.5, 3), trace=2)
# Example using the pairwise composite (full) likelihood
set.seed(1)
data <- rExtDep(n=300, model="ET", par=c(0.6,3))
f.et <- fExtDep(method="Composite", data=data, model="ET",
par.start = c(0.5, 1), trace=2)