ellipse {ExtremalDep} | R Documentation |
Level sets for bivariate normal, student-t and skew-normal distributions probability densities.
Description
Level sets of the bivariate normal, student-t and skew-normal distributions probability densities for a given probability.
Usage
ellipse(center=c(0,0), alpha=c(0,0), sigma=diag(2), df=1,
prob=0.01, npoints=250, pos=FALSE)
Arguments
center |
A vector of length 2 corresponding to the location of the distribution. |
alpha |
A vector of length 2 corresponding to the skewness of the skew-normal distribution. |
sigma |
A 2 by 2 variance-covariance matrix. |
df |
An integer corresponding to the degree of freedom of the student-t distribution. |
prob |
The probability level. See |
npoints |
The maximum number of points at which it is evaluated. |
pos |
If |
Details
The Level sets are defined as
R(f_\alpha)=\{ x: f(x) \geq f_\alpha \}
where f_\alpha
is the largest constant such that
P(X \in R(f_\alpha)) \geq 1-\alpha
.
Here we consider f(x)
to be the bivariate normal, student-t or skew-normal density.
Value
Returns a bivariate vector of 250
rows if pos=FALSE
, and half otherwise.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
Examples
library(mvtnorm)
# Data simulation (Bivariate-t on positive quadrant)
rho <- 0.5
sigma <- matrix(c(1,rho,rho,1), ncol=2)
df <- 2
set.seed(101)
n <- 1500
data <- rmvt(5*n, sigma=sigma, df=df)
data <- data[data[,1]>0 & data[,2]>0, ]
data <- data[1:n, ]
P <- c(1/750, 1/1500, 1/3000)
ell1 <- ellipse(prob=1-P[1], sigma=sigma, df=df, pos=TRUE)
ell2 <- ellipse(prob=1-P[2], sigma=sigma, df=df, pos=TRUE)
ell3 <- ellipse(prob=1-P[3], sigma=sigma, df=df, pos=TRUE)
plot(data, xlim=c(0,max(data[,1],ell1[,1],ell2[,1],ell3[,1])),
ylim=c(0,max(data[,2],ell1[,2],ell2[,2],ell3[,2])), pch=19)
points(ell1, type="l", lwd=2, lty=1)
points(ell2, type="l", lwd=2, lty=1)
points(ell3, type="l", lwd=2, lty=1)