dmest {ExtremalDep} | R Documentation |
Bivariate and trivariate extended skew-t distribution
Description
Density function, distribution function for the bivariate and trivariate extended skew-t (EST) distribution.
Usage
dmest(x=c(0,0), location=rep(0, length(x)), scale=diag(length(x)),
shape=rep(0,length(x)), extended=0, df=Inf)
pmest(x=c(0,0), location=rep(0, length(x)), scale=diag(length(x)),
shape=rep(0,length(x)), extended=0, df=Inf)
Arguments
x |
quantile vector of length |
location |
a numeric location vector of length |
scale |
a symmetric positive-definite scale matrix of dimension |
shape |
a numeric skewness vector of length |
extended |
a single value extension parameter. |
df |
a single positive value representing the degree of freedom;
it can be non-integer. Default value is |
Value
density (dmest
), probability (pmest
) from the bivariate or trivariate extended skew-t distribution with given
location
, scale
, shape
, extended
and df
parameters or from the skew-t distribution if extended=0
.
If shape=0
and extended=0
then the t distribution is recovered.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
References
Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J.Roy. Statist. Soc. B 65, 367–389.
Azzalini, A. with the collaboration of Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press, IMS Monograph series.
Examples
sigma1 <- matrix(c(2,1.5,1.5,3),ncol=2)
sigma2 <- matrix(c(2,1.5,1.8,1.5,3,2.2,1.8,2.2,3.5),ncol=3)
shape1 <- c(1,2)
shape2 <- c(1,2,1.5)
dens1 <- dmest(x=c(1,1), scale=sigma1, shape=shape1, extended=2, df=1)
dens2 <- dmest(x=c(1,1), scale=sigma1, df=1)
dens3 <- dmest(x=c(1,1,1), scale=sigma2, shape=shape2, extended=2, df=1)
dens4 <- dmest(x=c(1,1,1), scale=sigma2, df=1)
prob1 <- pmest(x=c(1,1), scale=sigma1, shape=shape1, extended=2, df=1)
prob2 <- pmest(x=c(1,1), scale=sigma1, df=1)
prob3 <- pmest(x=c(1,1,1), scale=sigma2, shape=shape2, extended=2, df=1)
prob4 <- pmest(x=c(1,1,1), scale=sigma2, df=1)