| dmest {ExtremalDep} | R Documentation | 
Bivariate and trivariate extended skew-t distribution
Description
Density function, distribution function for the bivariate and trivariate extended skew-t (EST) distribution.
Usage
dmest(x=c(0,0), location=rep(0, length(x)), scale=diag(length(x)),
      shape=rep(0,length(x)), extended=0, df=Inf)
pmest(x=c(0,0), location=rep(0, length(x)), scale=diag(length(x)),
      shape=rep(0,length(x)), extended=0, df=Inf)
Arguments
| x |  quantile vector of length  | 
| location | a numeric location vector of length  | 
| scale | a symmetric positive-definite scale matrix of dimension  | 
| shape | a numeric skewness vector of length  | 
| extended | a single value extension parameter.  | 
| df | a single positive value representing the degree of freedom;
it can be non-integer. Default value is  | 
Value
density (dmest), probability (pmest) from the bivariate or trivariate extended skew-t distribution with given
location, scale, shape, extended and df parameters or from the skew-t distribution if extended=0.
If shape=0 and extended=0 then the t distribution is recovered.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
References
Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J.Roy. Statist. Soc. B 65, 367–389.
Azzalini, A. with the collaboration of Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press, IMS Monograph series.
Examples
sigma1 <- matrix(c(2,1.5,1.5,3),ncol=2)
sigma2 <- matrix(c(2,1.5,1.8,1.5,3,2.2,1.8,2.2,3.5),ncol=3)
shape1 <- c(1,2)
shape2 <- c(1,2,1.5)
dens1 <- dmest(x=c(1,1), scale=sigma1, shape=shape1, extended=2, df=1)
dens2 <- dmest(x=c(1,1), scale=sigma1, df=1)
dens3 <- dmest(x=c(1,1,1), scale=sigma2, shape=shape2, extended=2, df=1)
dens4 <- dmest(x=c(1,1,1), scale=sigma2, df=1)
prob1 <- pmest(x=c(1,1), scale=sigma1, shape=shape1, extended=2, df=1)
prob2 <- pmest(x=c(1,1), scale=sigma1, df=1)
prob3 <- pmest(x=c(1,1,1), scale=sigma2, shape=shape2, extended=2, df=1)
prob4 <- pmest(x=c(1,1,1), scale=sigma2, df=1)