angular {ExtremalDep} | R Documentation |
Estimation of the angular density, angular measure and random generation from the angular distribution.
Description
Empirical estimation to the Pickands dependence function, the angular density, the angular measure and random generation of samples from the estimated angular density.
Usage
angular(data, model, n, dep, asy, alpha, beta, df, seed, k, nsim, plot=TRUE, nw=100)
Arguments
data |
The dataset in vector form |
model |
The specified model; a character string. Must be either |
n |
The number of random generations from the |
dep |
The dependence parameter for the |
asy |
A vector of length two, containing the two asymmetry parameters for the asymmetric logistic ( |
alpha , beta |
Alpha and beta parameters for the bilogistic, negative logistic, Coles-Tawn and asymmetric mixed models. |
df |
The degree of freedom for the extremal-t model. |
seed |
The seed for the data generation. Required if |
k |
The polynomial order. |
nsim |
The number of generations from the estimated angular density. |
plot |
If |
nw |
The number of points at which the estimated functions are evaluated |
Details
See Marcon et al. (2017).
Value
Returns a list which contains model
, n
, dep
, data
, Aest
the estimated pickands dependence function, hest
the estimated angular density, Hest
the estimated angular measure, p0
and p1
the point masses at the edge of the simplex, wsim
the simulated sample from the angular density and Atrue
and htrue
the true Pickand dependence function and angular density (if model
is specified).
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com; Giulia Marcon, giuliamarcongm@gmail.com
References
Marcon, G., Naveau, P. and Padoan, S. A. (2017). A semi-parametric stochastic generator for bivariate extreme events, Stat 6(1), 184–201.
Examples
################################################
# The following examples provide the left panels
# of Figure 1, 2 & 3 of Marcon et al. (2017).
################################################
## Figure 1 - symmetric logistic
# Strong dependence
a <- angular(model='log', n=50, dep=0.3, seed=4321, k=20, nsim=10000)
# Mild dependence
b <- angular(model='log', n=50, dep=0.6, seed=212, k=10, nsim=10000)
# Weak dependence
c <- angular(model='log', n=50, dep=0.9, seed=4334, k=6, nsim=10000)
## Figure 2 - Asymmetric logistic
# Strong dependence
d <- angular(model='alog', n=25, dep=0.3, asy=c(.3,.8), seed=43121465, k=20, nsim=10000)
# Mild dependence
e <- angular(model='alog', n=25, dep=0.6, asy=c(.3,.8), seed=1890, k=10, nsim=10000)
# Weak dependence
f <- angular(model='alog', n=25, dep=0.9, asy=c(.3,.8), seed=2043, k=5, nsim=10000)